1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and development of a multi‐epitope vaccine for the prevention of latent tuberculosis infection

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Latent tuberculosis infection (LTBI) often progresses to active tuberculosis, necessitating the development of novel vaccine to prevent LTBI. In this study, we aimed to design a Mycobacterium tuberculosis ( M. tuberculosis) vaccine that could elicit a potent immune response to prevent LTBI.

          Methods

          We used bioinformatics and immunoinformatics techniques to develop a multi‐epitope vaccine (MEV) called C624P. The vaccine contained six cytotoxic T lymphocytes (CTL), two helper T lymphocytes (HTL), and four B‐cell epitopes derived from six antigens associated with LTBI and the Mycobacterium tuberculosis region of difference. We added Toll‐like receptor (TLR) agonists and PADRE peptide to the MEV to enhance its immunogenicity. We then analyzed the C624P vaccine's physical and chemical properties, spatial structure, molecular docking with TLRs, and immunological features.

          Results

          The C624P vaccine displayed good antigenicity and immunogenicity scores of 0.901398 and 3.65609, respectively. The vaccine structure was stable, with 42.82% α‐helix content, a Z‐value of −7.84, and a favored Ramachandran plot area of 85.84% after majorization. Molecular docking analysis showed that the C624P vaccine could bind tightly to TLR2 (−1011.0 kcal/mol) and TLR4 (−941.4 kcal/mol). Furthermore, the C624P vaccine effectively stimulated T and B lymphocytes, resulting in high levels of Th1 cytokines such as IFN‐γ and IL‐2.

          Conclusions

          The C624P vaccine represents a promising MEV for preventing LTBI. The vaccine's good antigenicity, immunogenicity, stability, and ability to activate immune responses suggest its effectiveness in preventing LTBI. Our study demonstrated the utility of bioinformatics and immunoinformatics techniques in designing safe and effective tuberculosis vaccines.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SWISS-MODEL: homology modelling of protein structures and complexes

          Abstract Homology modelling has matured into an important technique in structural biology, significantly contributing to narrowing the gap between known protein sequences and experimentally determined structures. Fully automated workflows and servers simplify and streamline the homology modelling process, also allowing users without a specific computational expertise to generate reliable protein models and have easy access to modelling results, their visualization and interpretation. Here, we present an update to the SWISS-MODEL server, which pioneered the field of automated modelling 25 years ago and been continuously further developed. Recently, its functionality has been extended to the modelling of homo- and heteromeric complexes. Starting from the amino acid sequences of the interacting proteins, both the stoichiometry and the overall structure of the complex are inferred by homology modelling. Other major improvements include the implementation of a new modelling engine, ProMod3 and the introduction a new local model quality estimation method, QMEANDisCo. SWISS-MODEL is freely available at https://swissmodel.expasy.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins

            A major problem in structural biology is the recognition of errors in experimental and theoretical models of protein structures. The ProSA program (Protein Structure Analysis) is an established tool which has a large user base and is frequently employed in the refinement and validation of experimental protein structures and in structure prediction and modeling. The analysis of protein structures is generally a difficult and cumbersome exercise. The new service presented here is a straightforward and easy to use extension of the classic ProSA program which exploits the advantages of interactive web-based applications for the display of scores and energy plots that highlight potential problems spotted in protein structures. In particular, the quality scores of a protein are displayed in the context of all known protein structures and problematic parts of a structure are shown and highlighted in a 3D molecule viewer. The service specifically addresses the needs encountered in the validation of protein structures obtained from X-ray analysis, NMR spectroscopy and theoretical calculations. ProSA-web is accessible at https://prosa.services.came.sbg.ac.at
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines

              Background Vaccine development in the post-genomic era often begins with the in silico screening of genome information, with the most probable protective antigens being predicted rather than requiring causative microorganisms to be grown. Despite the obvious advantages of this approach – such as speed and cost efficiency – its success remains dependent on the accuracy of antigen prediction. Most approaches use sequence alignment to identify antigens. This is problematic for several reasons. Some proteins lack obvious sequence similarity, although they may share similar structures and biological properties. The antigenicity of a sequence may be encoded in a subtle and recondite manner not amendable to direct identification by sequence alignment. The discovery of truly novel antigens will be frustrated by their lack of similarity to antigens of known provenance. To overcome the limitations of alignment-dependent methods, we propose a new alignment-free approach for antigen prediction, which is based on auto cross covariance (ACC) transformation of protein sequences into uniform vectors of principal amino acid properties. Results Bacterial, viral and tumour protein datasets were used to derive models for prediction of whole protein antigenicity. Every set consisted of 100 known antigens and 100 non-antigens. The derived models were tested by internal leave-one-out cross-validation and external validation using test sets. An additional five training sets for each class of antigens were used to test the stability of the discrimination between antigens and non-antigens. The models performed well in both validations showing prediction accuracy of 70% to 89%. The models were implemented in a server, which we call VaxiJen. Conclusion VaxiJen is the first server for alignment-independent prediction of protective antigens. It was developed to allow antigen classification solely based on the physicochemical properties of proteins without recourse to sequence alignment. The server can be used on its own or in combination with alignment-based prediction methods. It is freely-available online at the URL: .
                Bookmark

                Author and article information

                Contributors
                Journal
                Medicine Advances
                Medicine Advances
                Wiley
                2834-4391
                2834-4405
                December 2023
                November 14 2023
                December 2023
                : 1
                : 4
                : 361-382
                Affiliations
                [1 ] Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment Senior Department of Tuberculosis The Eighth Medical Center of PLA General Hospital Beijing China
                [2 ] Section of Health No. 94804 Unit of the Chinese People's Liberation Army Shanghai China
                [3 ] Department of Endocrinology The Eighth Medical Center of PLA General Hospital Beijing China
                Article
                10.1002/med4.40
                4cffa707-50b2-4c02-8442-f4636776025b
                © 2023

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article