5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sensor designs found in nature are optimal due to their evolution over millions of years, making them well-suited for sensing applications. However, replicating these complex, three-dimensional (3D), biomimetic designs in artificial and flexible sensors using conventional techniques such as lithography is challenging. In this paper, we introduce a new processing paradigm for the simplified fabrication of flexible sensors featuring complex and bioinspired structures. The proposed fabrication workflow entailed 3D-printing a metallic mold with complex and intricate 3D features such as a micropillar and a microchannel, casting polydimethylsiloxane (PDMS) inside the mold to obtain the desired structure, and drop-casting piezoresistive graphene nanoplatelets into the predesigned microchannel to form a flexible strain gauge. The graphene-on-PDMS strain gauge showed a high gauge factor of 37 as measured via cyclical tension-compression tests. The processing workflow was used to fabricate a flow sensor inspired by hair-like ‘cilia’ sensors found in nature, which comprised a cilia-inspired pillar and a cantilever with a microchannel that housed the graphene strain gauge. The sensor showed good sensitivity against both tactile and water flow stimuli, with detection thresholds as low as 12 µm in the former and 58 mm/s in the latter, demonstrating the feasibility of our method in developing flexible flow sensors.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          A stretchable carbon nanotube strain sensor for human-motion detection.

          Devices made from stretchable electronic materials could be incorporated into clothing or attached directly to the body. Such materials have typically been prepared by engineering conventional rigid materials such as silicon, rather than by developing new materials. Here, we report a class of wearable and stretchable devices fabricated from thin films of aligned single-walled carbon nanotubes. When stretched, the nanotube films fracture into gaps and islands, and bundles bridging the gaps. This mechanism allows the films to act as strain sensors capable of measuring strains up to 280% (50 times more than conventional metal strain gauges), with high durability, fast response and low creep. We assembled the carbon-nanotube sensors on stockings, bandages and gloves to fabricate devices that can detect different types of human motion, including movement, typing, breathing and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-strain sensors based on ZnO nanowire/polystyrene hybridized flexible films.

              A type of strain sensor with high tolerable strain based on a ZnO nanowires/polystyrene nanofibers hybrid structure on a polydimethylsiloxane film is reported. The novel strain sensor can measure and withstand high strain and demonstrates good performance on rapid human-motion measurements. In addition, the device could be driven by solar cells. The results indicate that the device has potential applications as an outdoor sensor system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                30 June 2019
                July 2019
                : 9
                : 7
                : 954
                Affiliations
                [1 ]Advanced Production Engineering Group, Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
                [2 ]MIT Sea Grant College Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
                Author notes
                [* ]Correspondence: y.pei@ 123456rug.nl ; Tel.: +31-(0)50-3632037
                Author information
                https://orcid.org/0000-0002-1622-9067
                https://orcid.org/0000-0002-1817-2228
                https://orcid.org/0000-0002-3868-7069
                Article
                nanomaterials-09-00954
                10.3390/nano9070954
                6669618
                31262009
                4c95ef17-28c2-4e5f-9386-547638bd9a76
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 June 2019
                : 28 June 2019
                Categories
                Article

                3d printing,biomimetic sensor,flexible electronics,graphene,pdms,gauge factor

                Comments

                Comment on this article