12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effect of novel synthetic semicarbazone- and thiosemicarbazone-linked 1,2,3-triazoles on the apoptotic markers, VEGFR-2, and cell cycle of myeloid leukemia

      , , ,
      Bioorganic Chemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Apoptosis: a review of programmed cell death.

          The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. The ability to modulate the life or death of a cell is recognized for its immense therapeutic potential. Therefore, research continues to focus on the elucidation and analysis of the cell cycle machinery and signaling pathways that control cell cycle arrest and apoptosis. To that end, the field of apoptosis research has been moving forward at an alarmingly rapid rate. Although many of the key apoptotic proteins have been identified, the molecular mechanisms of action or inaction of these proteins remain to be elucidated. The goal of this review is to provide a general overview of current knowledge on the process of apoptosis including morphology, biochemistry, the role of apoptosis in health and disease, detection methods, as well as a discussion of potential alternative forms of apoptosis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.

              We describe here the development and implementation of a pilot-scale, in vitro, anticancer drug screen utilizing a panel of 60 human tumor cell lines organized into subpanels representing leukemia, melanoma, and cancers of the lung, colon, kidney, ovary, and central nervous system. The ultimate goal of this disease-oriented screen is to facilitate the discovery of new compounds with potential cell line-specific and/or subpanel-specific antitumor activity. In the current screening protocol, each cell line is inoculated onto microtiter plates, then preincubated for 24-28 hours. Subsequently, test agents are added in five 10-fold dilutions and the culture is incubated for an additional 48 hours. For each test agent, a dose-response profile is generated. End-point determinations of the cell viability or cell growth are performed by in situ fixation of cells, followed by staining with a protein-binding dye, sulforhodamine B (SRB). The SRB binds to the basic amino acids of cellular macromolecules; the solubilized stain is measured spectrophotometrically to determine relative cell growth or viability in treated and untreated cells. Following the pilot screening studies, a screening rate of 400 compounds per week has been consistently achieved.
                Bookmark

                Author and article information

                Journal
                Bioorganic Chemistry
                Bioorganic Chemistry
                Elsevier BV
                00452068
                October 2022
                October 2022
                : 127
                : 105968
                Article
                10.1016/j.bioorg.2022.105968
                35728289
                4c7d7b70-de87-4b55-bd0d-5ec497b23b95
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article