82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Understanding the value and limits of nature-based solutions to climate change and other global challenges

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is growing awareness that ‘nature-based solutions' (NbS) can help to protect us from climate change impacts while slowing further warming, supporting biodiversity and securing ecosystem services. However, the potential of NbS to provide the intended benefits has not been rigorously assessed. There are concerns over their reliability and cost-effectiveness compared to engineered alternatives, and their resilience to climate change. Trade-offs can arise if climate mitigation policy encourages NbS with low biodiversity value, such as afforestation with non-native monocultures. This can result in maladaptation, especially in a rapidly changing world where biodiversity-based resilience and multi-functional landscapes are key. Here, we highlight the rise of NbS in climate policy—focusing on their potential for climate change adaptation as well as mitigation—and discuss barriers to their evidence-based implementation. We outline the major financial and governance challenges to implementing NbS at scale, highlighting avenues for further research. As climate policy turns increasingly towards greenhouse gas removal approaches such as afforestation, we stress the urgent need for natural and social scientists to engage with policy makers. They must ensure that NbS can achieve their potential to tackle both the climate and biodiversity crisis while also contributing to sustainable development. This will require systemic change in the way we conduct research and run our institutions.

          This article is part of the theme issue ‘Climate change and ecosystems: threats, opportunities and solutions’.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          A general framework for analyzing sustainability of social-ecological systems.

          A major problem worldwide is the potential loss of fisheries, forests, and water resources. Understanding of the processes that lead to improvements in or deterioration of natural resources is limited, because scientific disciplines use different concepts and languages to describe and explain complex social-ecological systems (SESs). Without a common framework to organize findings, isolated knowledge does not cumulate. Until recently, accepted theory has assumed that resource users will never self-organize to maintain their resources and that governments must impose solutions. Research in multiple disciplines, however, has found that some government policies accelerate resource destruction, whereas some resource users have invested their time and energy to achieve sustainability. A general framework is used to identify 10 subsystem variables that affect the likelihood of self-organization in efforts to achieve a sustainable SES.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Urban greening to cool towns and cities: A systematic review of the empirical evidence

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Global Carbon Budget 2017

              Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO 2 emissions from fossil fuels and industry ( E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change ( E LUC ), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO 2 concentration is measured directly and its rate of growth ( G ATM ) is computed from the annual changes in concentration. The ocean CO 2 sink ( S OCEAN ) and terrestrial CO 2 sink ( S LAND ) are estimated with global process models constrained by observations. The resulting carbon budget imbalance ( B IM ), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1 σ . For the last decade available (2007–2016), E FF was 9.4 ± 0.5 GtC yr −1 , E LUC 1.3 ± 0.7 GtC yr −1 , G ATM 4.7 ± 0.1 GtC yr −1 , S OCEAN 2.4 ± 0.5 GtC yr −1 , and S LAND 3.0 ± 0.8 GtC yr −1 , with a budget imbalance B IM of 0.6 GtC yr −1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in E FF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr −1 . Also for 2016, E LUC was 1.3 ± 0.7 GtC yr −1 , G ATM was 6.1 ± 0.2 GtC yr −1 , S OCEAN was 2.6 ± 0.5 GtC yr −1 , and S LAND was 2.7 ± 1.0 GtC yr −1 , with a small B IM of −0.3 GtC. G ATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the high fossil emissions and the small S LAND consistent with El Niño conditions. The global atmospheric CO 2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data for the first 6–9 months indicate a renewed growth in E FF of +2.0 % (range of 0.8 to 3.0 %) based on national emissions projections for China, USA, and India, and projections of gross domestic product (GDP) corrected for recent changes in the carbon intensity of the economy for the rest of the world. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016, 2015b, a, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017 (GCP, 2017).
                Bookmark

                Author and article information

                Journal
                Philosophical Transactions of the Royal Society B: Biological Sciences
                Phil. Trans. R. Soc. B
                The Royal Society
                0962-8436
                1471-2970
                January 27 2020
                March 16 2020
                January 27 2020
                March 16 2020
                : 375
                : 1794
                : 20190120
                Affiliations
                [1 ]Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
                [2 ]Environmental Change Institute, School of Geography and Environment, University of Oxford, Oxford, UK
                Article
                10.1098/rstb.2019.0120
                31983344
                4c42984c-b2d7-4e3a-b652-0e7eeddd67ee
                © 2020

                https://royalsociety.org/journals/ethics-policies/data-sharing-mining/

                History

                Comments

                Comment on this article