0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Setting conservation priorities in multi-actor systems

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nature conservation is underresourced, requiring managers to prioritize where, when, and how to spend limited funds. Prioritization methods identify the subset of actions that provide the most benefit to an actor's objective. However, spending decisions by conservation actors are often misaligned with their objectives. Although this misalignment is frequently attributed to poor choices by the actors, we argue that it can also be a byproduct of working alongside other organizations. Using strategic analyses of multi-actor systems in conservation, we show how interactions among multiple conservation actors can create misalignment between the spending and objectives of individual actors and why current uncoordinated prioritizations lead to fewer conservation objectives achieved for individual actors. We draw three conclusions from our results. First, that misalignment is an unsuitable metric for evaluating spending, because it may be necessary to achieve actors’ objectives. Second, that current prioritization methods cannot identify optimal decisions (as they purport to do), because they do not incorporate other actors’ decisions. Third, that practical steps can be taken to move actors in the direction of coordination and thereby better achieve their conservation objectives.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses.

          "Landscape approaches" seek to provide tools and concepts for allocating and managing land to achieve social, economic, and environmental objectives in areas where agriculture, mining, and other productive land uses compete with environmental and biodiversity goals. Here we synthesize the current consensus on landscape approaches. This is based on published literature and a consensus-building process to define good practice and is validated by a survey of practitioners. We find the landscape approach has been refined in response to increasing societal concerns about environment and development tradeoffs. Notably, there has been a shift from conservation-orientated perspectives toward increasing integration of poverty alleviation goals. We provide 10 summary principles to support implementation of a landscape approach as it is currently interpreted. These principles emphasize adaptive management, stakeholder involvement, and multiple objectives. Various constraints are recognized, with institutional and governance concerns identified as the most severe obstacles to implementation. We discuss how these principles differ from more traditional sectoral and project-based approaches. Although no panacea, we see few alternatives that are likely to address landscape challenges more effectively than an approach circumscribed by the principles outlined here.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Knowing but not doing: selecting priority conservation areas and the research-implementation gap.

            Conservation assessment is a rapidly evolving discipline whose stated goal is the design of networks of protected areas that represent and ensure the persistence of nature (i.e., species, habitats, and environmental processes) by separating priority areas from the activities that degrade or destroy them. Nevertheless, despite a burgeoning scientific literature that ever refines these techniques for allocating conservation resources, it is widely believed that conservation assessments are rarely translated into actions that actually conserve nature. We reviewed the conservation assessment literature in peer-reviewed journals and conducted survey questionnaires of the authors of these studies. Two-thirds of conservation assessments published in the peer-reviewed scientific literature do not deliver conservation action, primarily because most researchers never plan for implementation. This research-implementation gap between conservation science and real-world action is a genuine phenomenon and is a specific example of the "knowing-doing gap" that is widely recognized in management science. Given the woefully inadequate resources allocated for conservation, our findings raise questions over the utility of conservation assessment science, as currently practiced, to provide useful, pragmatic solutions to conservation planning problems. A reevaluation of the conceptual and operational basis of conservation planning research is urgently required. We recommend the following actions for beginning a process for bridging the research-implementation gap in conservation planning: (1) acknowledge the research-implementation gap is real, (2) source research questions from practitioners, (3) situate research within a broader conservation planning model, (4) expand the social dimension of conservation assessments, (5) support conservation plans with transdisciplinary social learning institutions, (6) reward academics for societal engagement and implementation, and (7) train students in skills for "doing" conservation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optimal allocation of resources among threatened species: a project prioritization protocol.

              Conservation funds are grossly inadequate to address the plight of threatened species. Government and conservation organizations faced with the task of conserving threatened species desperately need simple strategies for allocating limited resources. The academic literature dedicated to systematic priority setting usually recommends ranking species on several criteria, including level of endangerment and metrics of species value such as evolutionary distinctiveness, ecological importance, and social significance. These approaches ignore 2 crucial factors: the cost of management and the likelihood that the management will succeed. These oversights will result in misallocation of scarce conservation resources and possibly unnecessary losses. We devised a project prioritization protocol (PPP) to optimize resource allocation among New Zealand's threatened-species projects, where costs, benefits (including species values), and the likelihood of management success were considered simultaneously. We compared the number of species managed and the expected benefits gained with 5 prioritization criteria: PPP with weightings based on species value; PPP with species weighted equally; management costs; species value; and threat status. We found that the rational use of cost and success information substantially increased the number of species managed, and prioritizing management projects according to species value or threat status in isolation was inefficient and resulted in fewer species managed. In addition, we found a clear trade-off between funding management of a greater number of the most cost-efficient and least risky projects and funding fewer projects to manage the species of higher value. Specifically, 11 of 32 species projects could be funded if projects were weighted by species value compared with 16 projects if projects were not weighted. This highlights the value of a transparent decision-making process, which enables a careful consideration of trade-offs. The use of PPP can substantially improve conservation outcomes for threatened species by increasing efficiency and ensuring transparency of management decisions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BioScience
                Oxford University Press (OUP)
                0006-3568
                1525-3244
                July 2023
                August 08 2023
                July 19 2023
                July 2023
                August 08 2023
                July 19 2023
                : 73
                : 7
                : 522-532
                Article
                10.1093/biosci/biad046
                4c40916d-6926-48f1-b90e-8d9666d81eff
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article