70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feline Neonatal Isoerythrolysis and the Importance of Feline Blood Types

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although feline neonatal isoerythrolysis is rare, associated mortality rate is high. It results from mating of type B blood queens with type A or AB blood toms. A comprehensive review on feline blood types and feline neonatal isoerythrolysis physiopathology, clinical features, diagnosis, treatment, and prevention is covered.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Immune system development in the dog and cat.

          M Day (2007)
          Routine vaccination of young puppies and kittens takes place within the first 16 weeks of life, during which time there is considerable change in the immune system of these animals. Newborn pups and kittens must obtain passive immune protection through the ingestion of colostrum within the first hours of life. The timing of early life vaccination is determined by the period of time required for passively acquired immunoglobulin to degrade, thereby permitting an endogenous immune response to be generated by the neonate. In the absence of inhibitory maternally derived antibody (MDA), pups and kittens are capable of mounting a protective immune response at an early age. New generation molecular vaccines appear able to circumvent the inhibitory effects of MDA. In addition to changes in serum immunoglobulin concentrations, there are alterations in the numbers and proportions of blood and tissue leucocytes (particularly CD4(+) and CD8(+) T cells, and B cells) during the first year of life. The qualitative nature of the newborn immune system may also alter from Th2 regulation in utero to Th1 regulation in the neonatal period. Immune function is likely to be genetically determined, and in dogs there is evidence for breed effects on immune function which likely relate to the inheritance of particular haplotypes of major histocompatibility complex (MHC) genes. The design of vaccines for young animals of these species must take into account these immunological changes and the potential modulatory effect of vaccines on immune development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kitten mortality in the United Kingdom: a retrospective analysis of 274 histopathological examinations (1986 to 2000).

            The postmortem findings in 274 kittens were reviewed. The kittens were grouped by age at death: perinatal (< one day), neonatal (one to 14 days), preweaning (15 to 34 days) and postweaning (35 to 112 days); 203 (74 per cent) of the kittens were postweaning and 38 (14 per cent) were preweaning. Infectious disease was identified in 55 per cent of the kittens, and 71 per cent of the infectious disease was viral and detected significantly more frequently in rescue shelter kittens than in kittens from private homes. Twenty-five per cent of all kitten mortality was due to feline parvovirus (FPV). During the neonatal and preweaning periods, the main viral infections were feline herpesvirus and calicivirus. Feline infectious peritonitis caused the death of 17 kittens in the postweaning period. The rescue shelter kittens were significantly younger than the kittens from private homes (median survival 49 and 56 days) and were more likely to have FPV. The non-pedigree kittens were significantly younger than the pedigree kittens (42 v 56 days), and the pedigree kittens were significantly less likely to originate from rescue shelters. There was no significant difference between the age distribution of the male and female kittens. No diagnosis could be found in 33 per cent of the kittens, and this failure was correlated significantly with the submission of tissue samples as opposed to the whole carcase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group

              Background The cat has one common blood group with two major serotypes, blood type A that is dominant to type B. A rare type AB may also be allelic and is suspected to be recessive to A and dominant to B. Cat blood type antigens are defined, N-glycolylneuraminic acid (NeuGc) is associated with type A and N-acetylneuraminic acid (NeuAc) with type B. The enzyme cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) determines the sugar bound to the red cell by converting NeuAc to NeuGc. Thus, mutations in CMAH may cause the A and B blood types. Results Genomic sequence of CMAH from eight cats and the cDNA of four cats representing all blood types were analyzed to identify causative mutations. DNA variants consistent with the blood types were genotyped in over 200 cats. Five SNPs and an indel formed haplotypes that were consistent with each blood type. Conclusion Mutations in type B cats likely disrupt the gene function of CMAH, leading to a predominance of NeuAc. Type AB concordant variants were not identified, however, cDNA species suggest an alternative allele that activates a downstream start site, leading to a CMAH protein that would be altered at the 5' region. The cat AB blood group system is proposed to be designated by three alleles, A > a ab > b. The A and b CMAH alleles described herein can distinguish type A and type B cats without blood sample collections. CMAH represents the first blood group gene identified outside of non-human primates and humans.
                Bookmark

                Author and article information

                Journal
                Vet Med Int
                VMI
                Veterinary Medicine International
                SAGE-Hindawi Access to Research
                2042-0048
                2010
                2 June 2010
                : 2010
                : 753726
                Affiliations
                1Department of Veterinary Sciences, Veterinary Hospital, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
                2Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, 08193 Bellaterra, Spain
                Author notes
                *Ana C. Silvestre-Ferreira: aferreir@ 123456utad.pt

                Academic Editor: Giuliano Bettini

                Article
                10.4061/2010/753726
                2899707
                20631821
                4c29facc-c5cd-4542-877e-29ee878c9870
                Copyright © 2010 A. C. Silvestre-Ferreira and J. Pastor.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 October 2009
                : 21 December 2009
                : 14 March 2010
                Categories
                Review Article

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article