The peroxynitrite free radical (ONOO(-)) modulation of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) was investigated in rat CA1 pyramidal neurons using the whole-cell patch clamp technique. SIN-1(3-morpholino-sydnonimine), which can lead the simultaneous generation of superoxide anion and nitric oxide, and then form the highly reactive species ONOO(-), induced dose-dependent inhibition in amplitudes of both mEPSCs and sEPSCs. The SIN-1 action on mEPSC amplitude was completely blocked by U0126, a selective MEK inhibitor, suggesting that MEK contributed to the action of ONOO(-) on mEPSCs. The effect of SIN-1 was completely occluded either in the presence of the calcium chelator EGTA or the non-selective calcium channel antagonist Cd(2+). Furthermore, the application of nifedipine (20 μM), the L-type calcium channel blocker, had no effect on the ONOO(-)-induced decrease in mEPSC amplitude, excluding a role for L-type voltage-gated Ca(2+) channels in this process. SIN-1 inhibited the frequency of sEPSCs but had no effect on mEPSC frequency, which suggested a presynaptic action potential-dependent the action of ONOO(-) at CA1 pyramidal neuron synapses. The best-known glutamatergic input to CA1 pyramidal neurons is via Schaffer collaterals from CA3 area. However, no changes were observed in slices treated with SIN-1 on the spontaneous firing rates of CA3 pyramidal neurons. These findings suggested that SIN-1 inhibited glutamatergic synaptic transmission of CA1 pyramidal neurons by a postsynaptic non-L-type voltage gated calcium channel-dependent mechanism.