281
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blood-Brain Barrier Breakdown Following Traumatic Brain Injury: A Possible Role in Posttraumatic Epilepsy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB) in the pathogenesis of post-traumatic epilepsy (PTE). This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI). Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG) recordings and brain magnetic resonance imaging (bMRI). bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA). TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients ( P = .001) and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients ( P = .001). Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier.

          Disruption of the tight junctions (TJs) of the blood-brain barrier (BBB) is a hallmark of many CNS pathologies, including stroke, HIV encephalitis, Alzheimer's disease, multiple sclerosis and bacterial meningitis. Furthermore, systemic-derived inflammation has recently been shown to cause BBB tight junctional disruption and increased paracellular permeability. The BBB is capable of rapid modulation in response to physiological stimuli at the cytoskeletal level, which enables it to protect the brain parenchyma and maintain a homeostatic environment. By allowing the "loosening" of TJs and an increase in paracellular permeability, the BBB is able to "bend without breaking"; thereby, maintaining structural integrity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex.

            Perturbations in the integrity of the blood-brain barrier have been reported in both humans and animals under numerous pathological conditions. Although the blood-brain barrier prevents the penetration of many blood constituents into the brain extracellular space, the effect of such perturbations on the brain function and their roles in the pathogenesis of cortical diseases are unknown. In this study we established a model for focal disruption of the blood-brain barrier in the rat cortex by direct application of bile salts. Exposure of the cerebral cortex in vivo to bile salts resulted in long-lasting extravasation of serum albumin to the brain extracellular space and was associated with a prominent activation of astrocytes with no inflammatory response or marked cell loss. Using electrophysiological recordings in brain slices we found that a focus of epileptiform discharges developed within 4-7 d after treatment and could be recorded up to 49 d postoperatively in >60% of slices from treated animals but only rarely (10%) in sham-operated controls. Epileptiform activity involved both glutamatergic and GABAergic neurotransmission. Epileptiform activity was also induced by direct cortical application of native serum, denatured serum, or albumin-containing solution. In contrast, perfusion with serum-adapted electrolyte solution did not induce abnormal activity, thereby suggesting that the exposure of the serum-devoid brain environment to serum proteins underlies epileptogenesis in the blood-brain barrier-disrupted cortex. Although many neuropathologies entail a compromised blood-brain barrier, this is the first direct evidence that it may have a role in the pathogenesis of focal cortical epilepsy, a common neurological disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neurophysiology of concussion.

              Cerebral concussion is both the most common and most puzzling type of traumatic brain injury (TBI). It is normally produced by acceleration (or deceleration) of the head and is characterized by a sudden brief impairment of consciousness, paralysis of reflex activity and loss of memory. It has long been acknowledged that one of the most worthwhile techniques for studying the acute pathophysiology of concussion is by the recording of neurophysiological activity such as the electroencephalogram (EEG) and sensory evoked potentials (EPs) from experimental animals. In the first parts of this review, the majority of such studies conducted during the past half century are critically reviewed. When potential methodological flaws and limitations such as anesthetic protocols, infliction of multiple blows and delay in onset of recordings were taken into account, two general principles could be adduced. First, the immediate post-concussive EEG was excitatory or epileptiform in nature. Second, the cortical EP waveform was totally lost during this period. In the second parts of this review, five theories of concussion which have been prominent during the past century are summarized and supportive evidence assessed. These are the vascular, reticular, centripetal, pontine cholinergic and convulsive hypotheses. It is concluded that only the convulsive theory is readily compatible with the neurophysiological data and can provide a totally viable explanation for concussion. The chief tenet of the convulsive theory is that since the symptoms of concussion bear a strong resemblance to those of a generalized epileptic seizure, then it is a reasonable assumption that similar pathobiological processes underlie them both. Further, it is demonstrated that EPs and EEGs recorded acutely following concussive trauma are indeed the same or similar to those obtained following the induction of a state of generalized seizure activity (GSA). According to the present incarnation of the convulsive theory, the energy imparted to the brain by the sudden mechanical loading of the head may generate turbulent rotatory and other movements of the cerebral hemispheres and so increase the chances of a tissue-deforming collision or impact between the cortex and the boney walls of the skull. In this conception, loss of consciousness is not orchestrated by disruption or interference with the function of the brainstem reticular activating system. Rather, it is due to functional deafferentation of the cortex as a consequence of diffuse mechanically-induced depolarization and synchronized discharge of cortical neurons. A convulsive theory can also explain traumatic amnesia, autonomic disturbances and the miscellaneous collection of symptoms of the post-concussion syndrome more adequately than any of its rivals. In addition, the symptoms of minor concussion (a.k.a. being stunned, dinged, or dazed) are often strikingly similar to minor epilepsy such as petit mal. The relevance of the convulsive theory to a number of associated problems is also discussed. These include the relationship between concussion and more serious types of closed head injury, the utility of animal models of severe brain trauma, the etiology of the cognitive deficits which may linger long after a concussive injury, the use of concussive (captive bolt) techniques to stun farm animals prior to slaughter and the question of why some animals (such as the woodpecker) can tolerate massive accelerative forces without being knocked out.
                Bookmark

                Author and article information

                Journal
                Cardiovasc Psychiatry Neurol
                CPN
                Cardiovascular Psychiatry and Neurology
                Hindawi Publishing Corporation
                2090-0163
                2090-0171
                2011
                22 February 2011
                : 2011
                : 765923
                Affiliations
                1Departments of Physiology and Neurobiology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
                2Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
                3Department of Neuroradiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
                4Department of Neurosurgery, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
                5Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
                Author notes

                Academic Editor: Daniela Kaufer

                Article
                10.1155/2011/765923
                3056210
                21436875
                4bd195b9-b4b0-41da-826f-094c3a8acd12
                Copyright © 2011 Oren Tomkins et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 October 2010
                : 2 January 2011
                Categories
                Research Article

                Clinical Psychology & Psychiatry
                Clinical Psychology & Psychiatry

                Comments

                Comment on this article