26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35–300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116.

          Findings

          High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software.

          Conclusions

          Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus).

          We report the ∼2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution human genome structure by single-molecule analysis.

            Variation in genome structure is an important source of human genetic polymorphism: It affects a large proportion of the genome and has a variety of phenotypic consequences relevant to health and disease. In spite of this, human genome structure variation is incompletely characterized due to a lack of approaches for discovering a broad range of structural variants in a global, comprehensive fashion. We addressed this gap with Optical Mapping, a high-throughput, high-resolution single-molecule system for studying genome structure. We used Optical Mapping to create genome-wide restriction maps of a complete hydatidiform mole and three lymphoblast-derived cell lines, and we validated the approach by demonstrating a strong concordance with existing methods. We also describe thousands of new variants with sizes ranging from kb to Mb.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity.

              Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.
                Bookmark

                Author and article information

                Contributors
                teoa1@gis.a-star.edu.sg
                verzottod@gis.a-star.edu.sg
                yaof@gis.a-star.edu.sg
                nagarajanng@gis.a-star.edu.sg
                hillmer@gis.a-star.edu.sg
                Journal
                Gigascience
                Gigascience
                GigaScience
                BioMed Central (London )
                2047-217X
                29 December 2015
                29 December 2015
                2015
                : 4
                : 65
                Affiliations
                [ ]Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672 Singapore
                [ ]Computational and Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672 Singapore
                Article
                106
                10.1186/s13742-015-0106-1
                4696294
                4b9ecce0-25f4-4b25-b495-761ff15ef327
                © Teo et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 14 July 2015
                : 17 December 2015
                Categories
                Data Note
                Custom metadata
                © The Author(s) 2015

                optical mapping,genomic mapping,cancer genome,genome structure,single-molecule restriction mapping

                Comments

                Comment on this article