13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cannabidiol Regulates the Expression of Keratinocyte Proteins Involved in the Inflammation Process through Transcriptional Regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cannabidiol (CBD), a natural phytocannabinoid without psychoactive effect, is a well-known anti-inflammatory and antioxidant compound. The possibility of its use in cytoprotection of cells from harmful factors, including ultraviolet (UV) radiation, is an area of ongoing investigation. Therefore, the aim of this study was to evaluate the effect of CBD on the regulatory mechanisms associated with the redox balance and inflammation in keratinocytes irradiated with UVA [30 J/cm 2] and UVB [60 mJ/cm 2]. Spectrophotometric results show that CBD significantly enhances the activity of antioxidant enzymes such as superoxide dismutase and thioredoxin reductase in UV irradiated keratinocytes. Furthermore, despite decreased glutathione peroxidase and reductase activities, CBD prevents lipid peroxidation, which was observed as a decreased level of 4-HNE and 15d-PGJ 2 (measured using GC/MS and LC/MS). Moreover, Western blot analysis of protein levels shows that, under stress conditions, CBD influences interactions of transcription factors Nrf2- NFκB by inhibiting the NFκB pathway, increasing the expression of Nrf2 activators and stimulating the transcription activity of Nrf2. In conclusion, the antioxidant activity of CBD through Nrf2 activation as well as its anti-inflammatory properties as an inhibitor of NFκB should be considered during design of new protective treatments for the skin.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults

          The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK.

            Constitutively activated NF-kappaB occurs in many inflammatory and tumor tissues. Does it interfere with anti-inflammatory or anti-tumor signaling pathway? Here, we report that NF-kappaB p65 subunit repressed the Nrf2-antioxidant response element (ARE) pathway at transcriptional level. In the cells where NF-kappaB and Nrf2 were simultaneously activated, p65 unidirectionally antagonized the transcriptional activity of Nrf2. In the p65-overexpressing cells, the ARE-dependent expression of heme oxygenase-1 was strongly suppressed. However, p65 inhibited the ARE-driven gene transcription in a way that was independent of its own transcriptional activity. Two mechanisms were found to coordinate the p65-mediated repression of ARE: (1) p65 selectively deprives CREB binding protein (CBP) from Nrf2 by competitive interaction with the CH1-KIX domain of CBP, which results in inactivation of Nrf2. The inactivation depends on PKA catalytic subunit-mediated phosphorylation of p65 at S276. (2) p65 promotes recruitment of histone deacetylase 3 (HDAC3), the corepressor, to ARE by facilitating the interaction of HDAC3 with either CBP or MafK, leading to local histone hypoacetylation. This investigation revealed the participation of NF-kappaB p65 in the negative regulation of Nrf2-ARE signaling, and might provide a new insight into a possible role of NF-kappaB in suppressing the expression of anti-inflammatory or anti-tumor genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cannabidiol as a Potential Treatment for Anxiety Disorders.

              Cannabidiol (CBD), a Cannabis sativa constituent, is a pharmacologically broad-spectrum drug that in recent years has drawn increasing interest as a treatment for a range of neuropsychiatric disorders. The purpose of the current review is to determine CBD's potential as a treatment for anxiety-related disorders, by assessing evidence from preclinical, human experimental, clinical, and epidemiological studies. We found that existing preclinical evidence strongly supports CBD as a treatment for generalized anxiety disorder, panic disorder, social anxiety disorder, obsessive-compulsive disorder, and post-traumatic stress disorder when administered acutely; however, few studies have investigated chronic CBD dosing. Likewise, evidence from human studies supports an anxiolytic role of CBD, but is currently limited to acute dosing, also with few studies in clinical populations. Overall, current evidence indicates CBD has considerable potential as a treatment for multiple anxiety disorders, with need for further study of chronic and therapeutic effects in relevant clinical populations.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                03 August 2019
                August 2019
                : 8
                : 8
                : 827
                Affiliations
                Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
                Author notes
                [* ]Correspondence: elzbieta.skrzydlewska@ 123456umb.edu.pl ; Tel.: +48-85-748-57-08; Fax: +48-85-74-85-882
                Author information
                https://orcid.org/0000-0001-5397-7139
                Article
                cells-08-00827
                10.3390/cells8080827
                6721680
                31382646
                4b80fd50-1630-4477-b221-89f33289ed28
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 June 2019
                : 03 August 2019
                Categories
                Article

                cannabidiol,uv radiation,keratinocytes,antioxidants,inflammation,intracellular signaling,nrf2,nfκb

                Comments

                Comment on this article