2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spatio-temporal multidisciplinary analysis of socio-environmental conditions to explore the COVID-19 early evolution in urban sites in South America

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to analyse how socio-environmental conditions affected the early evolution of COVID-19 in 14 urban sites in South America based on a spatio-temporal multidisciplinary approach. The daily incidence rate of new COVID-19 cases with symptoms as the dependent variable and meteorological-climatic data (mean, maximum, and minimum temperature, precipitation, and relative humidity) as the independent variables were analysed. The study period was from March to November of 2020. We inquired associations of these variables with COVID-19 data using Spearman's non-parametric correlation test, and a principal component analysis considering socio economic and demographic variables, new cases, and rates of COVID-19 new cases. Finally, an analysis using non-metric multidimensional scale ordering by the Bray-Curtis similarity matrix of meteorological data, socio economic and demographic variables, and COVID-19 was performed. Our findings revealed that the average, maximum, and minimum temperatures and relative humidity were significantly associated with rates of COVID-19 new cases in most of the sites, while precipitation was significantly associated only in four sites. Additionally, demographic variables such as the number of inhabitants, the percentage of the population aged 60 years and above, the masculinity index, and the GINI index showed a significant correlation with COVID-19 cases. Due to the rapid evolution of the COVID-19 pandemic, these findings provide strong evidence that biomedical, social, and physical sciences should join forces in truly multidisciplinary research that is critically needed in the current state of our region.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

            Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              The Socio-Economic Implications of the Coronavirus and COVID-19 Pandemic: A Review

              The COVID-19 pandemic has resulted in over 1.4 million confirmed cases and over 83,000 deaths globally. It has also sparked fears of an impending economic crisis and recession. Social distancing, self-isolation and travel restrictions forced a decrease in the workforce across all economic sectors and caused many jobs to be lost. Schools have closed down, and the need of commodities and manufactured products has decreased. In contrast, the need for medical supplies has significantly increased. The food sector has also seen a great demand due to panic-buying and stockpiling of food products. In response to this global outbreak, we summarise the socio-economic effects of COVID-19 on individual aspects of the world economy.
                Bookmark

                Author and article information

                Journal
                Heliyon
                Heliyon
                Heliyon
                Published by Elsevier Ltd.
                2405-8440
                6 May 2023
                6 May 2023
                : e16056
                Affiliations
                [a ]Global Consortium on Climate and Health Education, Columbia University, New York, United States
                [b ]Universidad de Buenos Aires, Departamento de Ciencias de la Atmósfera y los Océanos, CONICET, Argentina
                [c ]Universidad de Chile, Programa de Doctorado en Salud Pública, Instituto de Salud Pública de Chile, Chile
                [d ]Subred Integrada de Servicios Hospitalarios Centro Oriente ESE, Red Hospitalaria Bogotá Distrito Capital, Colombia
                [e ]Universidad Nacional de La Matanza, Departamento de Ciencias de la Salud, Argentina
                [f ]Ministerio de Salud de Argentina, Argentina
                [g ]Ministerio de Salud y Protección Social, Mesa de Variabilidad y Cambio Climático de la CONASA, Colombia
                [h ]Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, Subdirección de Meteorología, Mesa de Variabilidad y Cambio Climático de la CONASA, Miembro del grupo QuASAR UPN, Colombia
                [i ]Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Argentina
                [j ]Centro i∼mar, Universidad de Los Lagos, Chile and Centre for Climate and Resilience Research (CR)2, Casilla 557, Puerto Montt Chile
                Author notes
                []Corresponding author.Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Argentina.
                Article
                S2405-8440(23)03263-2 e16056
                10.1016/j.heliyon.2023.e16056
                10162854
                4b5247c8-289a-489a-9a51-ff15f12b7582
                © 2023 Published by Elsevier Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 1 December 2021
                : 24 April 2023
                : 3 May 2023
                Categories
                Research Article

                climate variability,sars-cov-2,pandemic,gini,parametric and non-parametric analysis

                Comments

                Comment on this article