29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A 100-Year Review: Stress physiology including heat stress

      , ,
      Journal of Dairy Science
      American Dairy Science Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stress is an external event or condition that places a strain on a biological system. The animal response to a stress involves the expenditure of energy to remove or reduce the impact of the stress. This increases maintenance requirements of the animal and results in loss of production. The biological response to stress is divided into acute and chronic phases, with the acute phase lasting hours to a few days and the chronic phase lasting several days to weeks. The acute response is driven by homeostatic regulators of the nervous and endocrine systems and the chronic phase by homeorhetic regulators of the endocrine system. Both responses involve alterations in energy balance and metabolism. Thermal environment affects all animals and therefore represents the largest single stressor in animal production. Other types of stressors include housing conditions, overcrowding, social rank, disease, and toxic compounds. "Acclimation" to a stress is a phenotypic response developed by the animal to an individual stressor within the environment. However, under natural conditions, it is rare for only one environmental variable to change over time. "Acclimatization" is the process by which an animal adapts to several stressors within its natural environment. Acclimation is a homeorhetic process that takes several weeks to occur and occurs via homeorhetic, not homeostatic, mechanisms. It is a phenotypic change that disappears when the stress is removed. When the stress is severe and not relieved by acclimatization or management changes, the animal is considered chronically stressed and is susceptible to increased incidence of disease and poor health. Milk yield and reproduction are extremely sensitive to stress because of the high energy and protein demands of lactation and the complexity of the reproductive process and multiple organs that are involved. Improvements in protection of animals against stress require improved education of producers to recognize stress and methods for estimating degree of stress on animals.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of heat stress on postabsorptive metabolism and energetics.

          Environmental-induced hyperthermia compromises efficient animal production and jeopardizes animal welfare. Reduced productive output during heat stress was traditionally thought to result from decreased nutrient intake. Our observations challenge this dogma and indicate that heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independent of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident through changes such as basal and stimulated circulating insulin levels. Hepatocyte and myocyte metabolism also show clear differences in glucose production and use during heat stress. Perhaps most intriguing, given the energetic shortfall of the heat-stressed animal, is the apparent lack of fat mobilization from adipose tissue coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The general adaptation syndrome and the diseases of adaptation.

            H Selye (1946)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin.

              Heat stress is detrimental to dairy production and affects numerous variables including feed intake and milk production. It is unclear, however, whether decreased milk yield is primarily due to the associated reduction in feed intake or the cumulative effects of heat stress on feed intake, metabolism, and physiology of dairy cattle. To distinguish between direct (not mediated by feed intake) and indirect (mediated by feed intake) effects of heat stress on physiological and metabolic indices, Holstein cows (n = 6) housed in thermal neutral conditions were pair-fed (PF) to match the nutrient intake of heat-stressed cows (HS; n = 6). All cows were subjected to 2 experimental periods: 1) thermal neutral and ad libitum intake for 9 d (P1) and 2) HS or PF for 9 d (P2). Heat-stress conditions were cyclical with daily temperatures ranging from 29.7 to 39.2 degrees C. During P1 and P2 all cows received i.v. challenges of epinephrine (d 6 of each period), and growth hormone releasing factor (GRF; d 7 of each period), and had circulating somatotropin (ST) profiles characterized (every 15 min for 6 h on d 8 of each period). During P2, HS cows were hyperthermic for the entire day and peak differences in rectal temperatures and respiration rates occurred in the afternoon (38.7 to 40.2 degrees C and 46 to 82 breaths/min, respectively). Heat stress decreased dry matter intake by greater than 35% and, by design, PF cows had similar reduced intakes. Heat stress and PF decreased milk yield, although the pattern and magnitude (40 and 21%, respectively) differed between treatments. The reduction in dry matter intake caused by HS accounted for only approximately 35% of the decrease in milk production. Both HS and PF cows entered into negative energy balance, but only PF cows had increased (approximately 120%) basal nonesterified fatty acid (NEFA) concentrations. Both PF and HS cows had decreased (7%) plasma glucose levels. The NEFA response to epinephrine did not differ between treatments but was increased (greater than 50%) in all cows during P2. During P2, HS (but not PF) cows had a modest reduction (16%) in plasma insulin-like growth factor-I. Neither treatment nor period had an effect on the ST response to GRF and there was little or no treatment effect on mean ST levels or pulsatility characteristics, but both HS and PF cows had reduced mean ST concentrations during P2. In summary, reduced nutrient intake accounted for just 35% of the HS-induced decrease in milk yield, and modest changes in the somatotropic axis may have contributed to a portion of the remainder. Differences in basal NEFA between PF and HS cows suggest a shift in postabsorptive metabolism and nutrient partitioning that may explain the additional reduction in milk yield in cows experiencing a thermal load.
                Bookmark

                Author and article information

                Journal
                Journal of Dairy Science
                Journal of Dairy Science
                American Dairy Science Association
                00220302
                December 2017
                December 2017
                : 100
                : 12
                : 10367-10380
                Article
                10.3168/jds.2017-13676
                29153170
                4a923757-9a66-4428-9ca4-a96a0d84e887
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article