3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analytical and functional profiles of paralytic shellfish toxins extracted from Semele proficua and Senilia senilis from Angola

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Paralytic shellfish poisoning is a foodborne illness that typically derive from the consumption of shellfish contaminated with saxitoxin-group of toxins produced by dinoflagellates of the genus Gymnodinium, Alexandrium and Pyrodinium. N-sulfocarbamoyl, carbamate and dicarbamoyl are the most abundant. In 2007 and 2008 some episodes of PSP occurred in Angola where there is not monitoring program for shellfish contamination with marine biotoxins. Therefore, ten samples extracted from Semele proficua from Luanda Bay and Senilia senilis from Mussulo Bay, were analyzed by HPLC finding saxitoxin, decarbamoylsaxitoxin and other three compounds that have an unusual profile different to the known hydrophilic PSP toxins were found in different amounts and combinations. These new compounds were not autofluorescent, and they presented much stronger response after peroxide oxidation than after periodate oxidation. The compounds appear as peaks eluted at 2.5 and 5.6 min after periodate oxidation and 8.2 min after peroxide oxidation. Electrophysiological studies revealed that none of the three unknown compounds had effect at cellular level by decreasing the maximum peak inward sodium currents by blocking voltage-gated sodium channels. Thus, not contributing to PSP intoxication. The presence in all samples of saxitoxin-group compounds poses a risk to human health and remarks the need to further explore the presence of new compounds that contaminate seafood, investigating their activity and developing monitoring programs.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of harmful algal blooms and their apparent global increase*

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paralytic shellfish poisoning: seafood safety and human health perspectives.

            Paralytic shellfish poisoning (PSP) is the foodborne illness associated with the consumption of seafood products contaminated with the neurotoxins known collectively as saxitoxins (STXs). This family of neurotoxins binds to voltage-gated sodium channels, thereby attenuating action potentials by preventing the passage of sodium ions across the membrane. Symptoms include tingling, numbness, headaches, weakness and difficulty breathing. Medical treatment is to provide respiratory support, without which the prognosis can be fatal. To protect human health, seafood harvesting bans are in effect when toxins exceed a safe action level (typically 80 microg STX eq 100 g(-1) tissue). Though worldwide fatalities have occurred, successful management and monitoring programs have minimized PSP cases and associated deaths. Much is known about the toxin sources, primarily certain dinoflagellate species, and there is extensive information on toxin transfer to traditional vectors - filter-feeding molluscan bivalves. Non-traditional vectors, such as puffer fish and lobster, may also pose a risk. Rapid and reliable detection methods are critical for toxin monitoring in a wide range of matrices, and these methods must be appropriately validated for regulatory purposes. This paper highlights PSP seafood safety concerns, documented human cases, applied detection methods as well as monitoring and management strategies for preventing PSP-contaminated seafood products from entering the food supply. Published by Elsevier Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microalgal metabolites: a new perspective.

              Y Shimizu (1996)
              Occurrence of secondary metabolites in microalgae (protoctista) is discussed with respect to the phylogenic or taxonomic relationships of organisms. Biosynthetic mechanisms of certain metabolites such as paralytic shellfish poisoning toxins and polyether toxins are also discussed, and genetic aspects of the secondary metabolite production as well.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                01 February 2024
                15 February 2024
                01 February 2024
                : 10
                : 3
                : e25338
                Affiliations
                [a ]Departamento de Farmacologia, IDIS, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
                [b ]Departamento de Química Analítica, Universidad de Santiago de Compostela, Campus Universitario, 27002, Lugo, Spain
                Author notes
                []Corresponding author. mdelcarmen.vale@ 123456usc.es
                [∗∗ ]Corresponding author. anamaria.botana@ 123456usc.es
                Article
                S2405-8440(24)01369-0 e25338
                10.1016/j.heliyon.2024.e25338
                10864898
                38356596
                4a7d8640-ac49-48b7-a6b9-8954fad6f9b1
                © 2024 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 21 July 2023
                : 24 January 2024
                : 24 January 2024
                Categories
                Research Article

                saxitoxin,algal blooms,algal toxins,cerebellar neuron,sodium current,hplc,toxicity

                Comments

                Comment on this article