23
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Accelerating COVID-19 Research Using Molecular Dynamics Simulation

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 pandemic has emerged as a global medico-socio-economic disaster. Given the lack of effective therapeutics against SARS-CoV-2, scientists are racing to disseminate suggestions for rapidly deployable therapeutic options, including drug repurposing and repositioning strategies. Molecular dynamics (MD) simulations have provided the opportunity to make rational scientific breakthroughs in a time of crisis. Advancements in these technologies in recent years have become an indispensable tool for scientists studying protein structure, function, dynamics, interactions, and drug discovery. Integrating the structural data obtained from high-resolution methods with MD simulations has helped in comprehending the process of infection and pathogenesis, as well as the SARS-CoV-2 maturation in host cells, in a short duration of time. It has also guided us to identify and prioritize drug targets and new chemical entities, and to repurpose drugs. Here, we discuss how MD simulation has been explored by the scientific community to accelerate and guide translational research on SARS-CoV-2 in the past year. We have also considered future research directions for researchers, where MD simulations can help fill the existing gaps in COVID-19 research.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

          Summary The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular Dynamics Simulation for All

            The impact of molecular dynamics (MD) simulations in molecular biology and drug discovery has expanded dramatically in recent years. These simulations capture the behavior of proteins and other biomolecules in full atomic detail and at very fine temporal resolution. Major improvements in simulation speed, accuracy, and accessibility, together with the proliferation of experimental structural data, have increased the appeal of biomolecular simulation to experimentalists—a trend particularly noticeable in , though certainly not limited to, neuroscience. Simulations have proven valuable in deciphering functional mechanisms of proteins and other biomolecules, in uncovering the structural basis for disease, and in the design and optimization of small molecules, peptides, and proteins. Here we describe in practical terms the types of information MD simulations can provide and the ways in which they typically motivate further experimental work.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beyond Shielding: The Roles of Glycans in the SARS-CoV-2 Spike Protein

              The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 28,000,000 infections and 900,000 deaths worldwide to date. Antibody development efforts mainly revolve around the extensively glycosylated SARS-CoV-2 spike (S) protein, which mediates host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2). Similar to many other viral fusion proteins, the SARS-CoV-2 spike utilizes a glycan shield to thwart the host immune response. Here, we built a full-length model of the glycosylated SARS-CoV-2 S protein, both in the open and closed states, augmenting the available structural and biological data. Multiple microsecond-long, all-atom molecular dynamics simulations were used to provide an atomistic perspective on the roles of glycans and on the protein structure and dynamics. We reveal an essential structural role of N-glycans at sites N165 and N234 in modulating the conformational dynamics of the spike’s receptor binding domain (RBD), which is responsible for ACE2 recognition. This finding is corroborated by biolayer interferometry experiments, which show that deletion of these glycans through N165A and N234A mutations significantly reduces binding to ACE2 as a result of the RBD conformational shift toward the “down” state. Additionally, end-to-end accessibility analyses outline a complete overview of the vulnerabilities of the glycan shield of the SARS-CoV-2 S protein, which may be exploited in the therapeutic efforts targeting this molecular machine. Overall, this work presents hitherto unseen functional and structural insights into the SARS-CoV-2 S protein and its glycan coat, providing a strategy to control the conformational plasticity of the RBD that could be harnessed for vaccine development.
                Bookmark

                Author and article information

                Journal
                J Phys Chem B
                J Phys Chem B
                jp
                jpcbfk
                The Journal of Physical Chemistry. B
                American Chemical Society
                1520-6106
                1520-5207
                28 July 2021
                : acs.jpcb.1c04556
                Affiliations
                []Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN , 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
                []Department of Biotechnology, National Institute of Technology , Warangal, Telangana 506004, India
                [§ ]Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University , Shillong 793022, India
                Author notes
                Author information
                https://orcid.org/0000-0001-5559-289X
                Article
                10.1021/acs.jpcb.1c04556
                8340580
                34319118
                4a4fe8ee-6ccc-40b3-b5ba-df35ff1aebfb
                © 2021 American Chemical Society

                This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 24 May 2021
                : 12 July 2021
                Funding
                Funded by: Tokyo Biochemical Research Foundation, doi 10.13039/100011313;
                Award ID: NA
                Funded by: Department of Biotechnology, Ministry of Science and Technology, India, doi 10.13039/501100001407;
                Award ID: BT/PR24905/NER/95/901/2017
                Funded by: National Institute of Technology Warangal, doi 10.13039/100017604;
                Award ID: P1131
                Categories
                Perspective
                Custom metadata
                jp1c04556
                jp1c04556

                Physical chemistry
                Physical chemistry

                Comments

                Comment on this article