There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Regulatory T cells (Tregs) are increasingly being recognized for their role in promoting
tissue repair. In this issue of the
JCI, Chen et al. found that Tregs at the site of bone injury contribute to bone repair.
The CCL1/CCR8 chemokine system promoted the accumulation of Tregs at the site of bone
injury, where Tregs supported skeletal stem cell (SSC) accumulation and osteogenic
differentiation. CCL1 increased the transcription factor basic leucine zipper ATF-like
transcription factor (BATF) in CCR8
+ Tregs, which induced the secretion of progranulin that promoted SSC osteogenic function
and new bone formation. This study highlights the ever-expanding role of Tregs in
tissue repair by demonstrating their ability to expand stem cells at a site of injury.
The maintenance of tissue homeostasis is critically dependent on the function of tissue-resident immune cells and the differentiation capacity of tissue-resident stem cells (SCs). How immune cells influence the function of SCs is largely unknown. Regulatory T cells (Tregs) in skin preferentially localize to hair follicles (HFs), which house a major subset of skin SCs (HFSCs). Here, we mechanistically dissect the role of Tregs in HF and HFSC biology. Lineage-specific cell depletion revealed that Tregs promote HF regeneration by augmenting HFSC proliferation and differentiation. Transcriptional and phenotypic profiling of T regs and HFSCs revealed that skin-resident Tregs preferentially express high levels of the Notch ligand family member, Jagged 1 (Jag1). Expression of Jag1 on Tregs facilitated HFSC function and efficient HF regeneration. Taken together, our work demonstrates that Tregs in skin play a major role in HF biology by promoting the function of HFSCs.
In the small intestine, a niche of accessory cell types supports the generation of mature epithelial cell types from intestinal stem cells (ISCs). It is unclear, however, if and how immune cells in the niche affect ISC fate or the balance between self-renewal and differentiation. Here, we use single-cell RNA sequencing (scRNA-seq) to identify MHC class II (MHCII) machinery enrichment in two subsets of Lgr5+ ISCs. We show that MHCII+ Lgr5+ ISCs are non-conventional antigen-presenting cells in co-cultures with CD4+ T helper (Th) cells. Stimulation of intestinal organoids with key Th cytokines affects Lgr5+ ISC renewal and differentiation in opposing ways: pro-inflammatory signals promote differentiation, while regulatory cells and cytokines reduce it. In vivo genetic perturbation of Th cells or MHCII expression on Lgr5+ ISCs impacts epithelial cell differentiation and IEC fate during infection. These interactions between Th cells and Lgr5+ ISCs, thus, orchestrate tissue-wide responses to external signals.
Background Bone fractures are a global public health issue; however, to date, no comprehensive study of their incidence and burden has been done. We aimed to measure the global, regional, and national incidence, prevalence, and years lived with disability (YLDs) of fractures from 1990 to 2019. Methods Using the framework of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we compared numbers and age-standardised rates of global incidence, prevalence, and YLDs of fractures across the 21 GBD regions and 204 countries and territories, by age, sex, and year, from 1990 to 2019. We report estimates with 95% uncertainty intervals (UIs). Findings Globally, in 2019, there were 178 million (95% UI 162–196) new fractures (an increase of 33·4% [30·1–37·0] since 1990), 455 million (428–484) prevalent cases of acute or long-term symptoms of a fracture (an increase of 70·1% [67·5–72·5] since 1990), and 25·8 million (17·8–35·8) YLDs (an increase of 65·3% [62·4–68·0] since 1990). The age-standardised rates of fractures in 2019 were 2296·2 incident cases (2091·1–2529·5) per 100 000 population (a decrease of 9·6% [8·1–11·1] since 1990), 5614·3 prevalent cases (5286·1–5977·5) per 100 000 population (a decrease of 6·7% [5·7–7·6] since 1990), and 319·0 YLDs (220·1–442·5) per 100 000 population (a decrease of 8·4% [7·2–9·5] since 1990). Lower leg fractures of the patella, tibia or fibula, or ankle were the most common and burdensome fracture in 2019, with an age-standardised incidence rate of 419·9 cases (345·8–512·0) per 100 000 population and an age-standardised rate of YLDs of 190·4 (125·0–276·9) per 100 000 population. In 2019, age-specific rates of fracture incidence were highest in the oldest age groups, with, for instance, 15 381·5 incident cases (11 245·3–20 651·9) per 100 000 population in those aged 95 years and older. Interpretation The global age-standardised rates of incidence, prevalence, and YLDs for fractures decreased slightly from 1990 to 2019, but the absolute counts increased substantially. Older people have a particularly high risk of fractures, and more widespread injury-prevention efforts and access to screening and treatment of osteoporosis for older individuals should help to reduce the overall burden. Funding Bill & Melinda Gates Foundation.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.