8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 1.9 Impact Factor I 5.9 CiteScore I 0.648 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Neurotransplantation of Fetal Porcine Cells in Patients with Basal Ganglia Infarcts: A Preliminary Safety and Feasibility Study

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Cell transplantation is safe in animal models and enhances recovery from stroke in rats. Methods: We studied the safety and feasibility of fetal porcine transplantation in 5 patients with basal ganglia infarcts and stable neurological deficits. To prevent rejection, cells were pretreated with an anti-MHC1 antibody and no immunosuppressive drugs were given to the patients. Results: The first 3 patients had no adverse cell, procedure, or imaging-defined effects. The fourth patient had temporary worsening of motor deficits 3 weeks after transplantation, and the fifth patient developed seizures 1 week after transplantation. MRI in both patients demonstrated areas of enhancement remote from the transplant site, which resolved on subsequent imaging. Two patients showed improvement in speech, language, and/or motor impairments over several months and persisted at 4 years. The study was terminated by the FDA after the inclusion of 5 patients. Conclusion: This is the first report on the transplantation of nontumor cells in ischemic stroke patients.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease.

          The movement disorder in Parkinson's disease results from the selective degeneration of a small group of dopaminergic neurons in the substantia nigra pars compacta region of the brain. A number of exploratory studies using human fetal tissue allografts have suggested that transplantation of dopaminergic neurons may become an effective treatment for patients with Parkinson's disease and the difficulty in obtaining human fetal tissue has generated interest in finding corresponding non-human donor cells. Here we report a post-mortem histological analysis of fetal pig neural cells that were placed unilaterally into the caudate-putamen brain region of a patient suffering from Parkinson's disease. Long-term (over seven months) graft survival was found and the presence of pig dopaminergic neurons and other pig neural and glial cells is documented. Pig neurons extended axons from the graft sites into the host brain. Furthermore, other graft derived cells were observed several millimeters from the implantation sites. Markers for human microglia and T-cells showed only low reactivity in direct proximity to the grafts. This is the first documentation of neural xenograft survival in the human brain and of appropriate growth of non-human dopaminergic neurons for a potential therapeutic response in Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres.

            Clinical trials are under way using fetal cells to repair damaged neuronal circuitry. However, little is known about how transplanted immature neurons can grow anatomically correct connections in the adult central nervous system (CNS). We transplanted embryonic porcine neural cells in vivo into adult rat brains with neuronal and axonal loss typical of Parkinson's or Huntington's disease. Using complementary species-specific cellular markers, we found donor axons and CD44+ astroglial fibres in host white matter tracts up to 8 mm from CNS transplant sites, although only donor axons were capable of reaching correct gray matter target regions. This work demonstrates that adult host brain can orient growth of transplanted neurons and that there are differences in transplant donor glial and axonal growth patterns in cellular repair of the mature CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell transplantation for stroke.

              Cell transplantation has emerged as an experimental approach to restore brain function after stroke. Various cell types including porcine fetal cells, stem cells, immortalized cell lines, and marrow stromal cells are under investigation in experimental and clinical stroke trials. This review discusses the unique advantages and limitations of the different graft sources and emphasizes the current, limited knowledge about their biology. The survival, integration, and efficacy of neural transplants in stroke patients will depend on the type, severity, chronicity, adequacy of circulation, and location of the stroke lesion.
                Bookmark

                Author and article information

                Journal
                CED
                Cerebrovasc Dis
                10.1159/issn.1015-9770
                Cerebrovascular Diseases
                S. Karger AG
                1015-9770
                1421-9786
                2005
                July 2005
                29 July 2005
                : 20
                : 2
                : 101-107
                Affiliations
                Departments of aNeurology and cNeurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass., bGenvec Inc., Charlestown, Mass., dDepartment of Neurology, Brigham and Women’s Hospital, Boston, Mass., eDepartment of Neurosurgery, New York Presbyterian Hospital, Weil Medical College of Cornell University, New York, N.Y., USA
                Article
                86518 Cerebrovasc Dis 2005;20:101–107
                10.1159/000086518
                15976503
                4a3e8a63-5061-436e-bcb1-149681df8c2e
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 26 January 2005
                : 11 April 2005
                Page count
                Figures: 2, Tables: 3, References: 13, Pages: 7
                Categories
                Original Paper

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Immunosuppression,Porcine cells,Stroke,Cell transplantation

                Comments

                Comment on this article