There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
Trauma is a worldwide problem, with severe and wide ranging consequences for individuals
and society as a whole. Hemorrhage is a major contributor to the dilemma of traumatic
injury and its care. In this article we describe the international epidemiology of
traumatic injury, its causes and its consequences, and closely examine the role played
by hemorrhage in producing traumatic morbidity and mortality. Emphasis is placed on
defining situations in which traditional methods of hemorrhage control often fail.
We then outline and discuss modern principles in the management of traumatic hemorrhage
and explore developing changes in these areas. We conclude with a discussion of outcome
measures for the injured patient within the context of the epidemiology of traumatic
injury.
Fluid resuscitation may be detrimental when given before bleeding is controlled in patients with trauma. The purpose of this study was to determine the effects of delaying fluid resuscitation until the time of operative intervention in hypotensive patients with penetrating injuries to the torso. We conducted a prospective trial comparing immediate and delayed fluid resuscitation in 598 adults with penetrating torso injuries who presented with a pre-hospital systolic blood pressure of < or = 90 mm Hg. The study setting was a city with a single centralized system of pre-hospital emergency care and a single receiving facility for patients with major trauma. Patients assigned to the immediate-resuscitation group received standard fluid resuscitation before they reached the hospital and in the trauma center, and those assigned to the delayed-resuscitation group received intravenous cannulation but no fluid resuscitation until they reached the operating room. Among the 289 patients who received delayed fluid resuscitation, 203 (70 percent) survived and were discharged from the hospital, as compared with 193 of the 309 patients (62 percent) who received immediate fluid resuscitation (P = 0.04). The mean estimated intraoperative blood loss was similar in the two groups. Among the 238 patients in the delayed-resuscitation group who survived to the postoperative period, 55 (23 percent) had one or more complications (adult respiratory distress syndrome, sepsis syndrome, acute renal failure, coagulopathy, wound infection, and pneumonia), as compared with 69 of the 227 patients (30 percent) in the immediate-resuscitation group (P = 0.08). The duration of hospitalization was shorter in the delayed-resuscitation group. For hypotensive patients with penetrating torso injuries, delay of aggressive fluid resuscitation until operative intervention improves the outcome.
Recognizing the impact of the 1977 San Francisco study of trauma deaths in trauma care, our purpose was to reassess those findings in a contemporary trauma system. Cross-sectional. All trauma deaths occurring in Denver City and County during 1992 were reviewed; data were obtained by cross-referencing four databases: paramedic trip reports, trauma registries, coroner autopsy reports and police reports. There were 289 postinjury fatalities; mean age was 36.8 +/- 1.2 years and mean Injury Severity Score (ISS) was 35.7 +/- 1.2. Predominant injury mechanisms were gunshot wounds in 121 (42%), motorvehicle accidents in 75 (38%) and falls in 23 (8%) cases. Seven (2%) individuals sustained lethal burns. Ninety eight (34%) deaths occurred in the pre-hospital setting. The remaining 191 (66%) patients were transported to the hospital. Of these, 154 (81%) died in the first 48 hours (acute), 11 (6%) within three to seven days (early) and 26 (14%) after seven days (late). Central nervous system injuries were the most frequent cause of death (42%), followed by exsanguination (39%) and organ failure (7%). While acute and early deaths were mostly due to the first two causes, organ failure was the most common cause of late death (61%). In comparison with the previous report, we observed similar injury mechanisms, demographics and causes of death. However, in our experience, there was an improved access to the medical system, greater proportion of late deaths due to brain injury and lack of the classic trimodal distribution.
Coagulopathy and hemorrhage are known contributors to trauma mortality; however, the actual relationship of prothrombin time (PT) and partial thromboplastin time (PTT) to mortality is unknown. Our objective was to measure the predictive value of the initial coagulopathy profile for trauma-related mortality. We reviewed prospectively collected data on trauma patients presenting to a Level I trauma center. A logistic regression analysis was performed of PT, PTT, platelet count, and confounders to determine whether coagulopathy is a predictor of all-cause mortality. From a trauma registry cohort of 20103 patients, 14397 had complete disposition data for initial analysis and 7638 had complete data for all variables in the final analysis. The total cohort was 76.2% male, the mean age was 38 years (range, 1-108 years), and the median Injury Severity Score was 9. There were 1276 deaths (all-cause mortality, 8.9%). The prevalence of coagulopathy early in the postinjury period was substantial, with 28% of patients having an abnormal PT (2994 of 10790) and 8% of patients having an abnormal PTT (826 of 10453) on arrival at the trauma bay. In patients with disposition data and a normal PT, 489 of 7796 died, as compared with 579 of 2994 with an abnormal PT (6.3% vs. 19.3%; chi2 = 414.1, p < 0.001). Univariate analysis generated an odds ratio of 3.6 (95% confidence interval [CI], 3.15-4.08; p < 0.0001) for death with abnormal PT and 7.81 (95% CI, 6.65-9.17; p < 0.001) for deaths with an abnormal PTT. The PT and PTT remained independent predictors of mortality in a multiple regression model, whereas platelet count did not. The model also included the independent risk factors age, Injury Severity Score, scene and trauma-bay blood pressure, hematocrit, base deficit, and head injury. The model generated an adjusted odds ratio of 1.35 for PT (95% CI, 1.11-1.68; p < 0.001) and 4.26 for PTT (95% CI, 3.23-5.63; p < 0.001). The incidence of coagulation abnormalities, early after trauma, is high and they are independent predictors of mortality even in the presence of other risk factors. An initial abnormal PT increases the adjusted odds of dying by 35% and an initial abnormal PTT increases the adjusted odds of dying by 326%.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.