Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes which catalyze a simple but physiologically crucial reaction in all life Domains, the carbon dioxide hydration to bicarbonate and protons: CO2 + H2O ⇔ HCO3(-)+ H(+). These enzymes are involved in many physiologic processes, such as photosynthesis, respiration, CO2 transport, as well as metabolism of xenobiotics. Five different, genetically distinct CA families are known to date: the α-, β-, γ-, δ- and ζ-CAs. α-, β- and δ-CAs use Zn(II) ions at the active site, the γ-CAs are probably Fe(II) enzymes (but they are active also with bound Zn(II) or Co(II) ions), whereas the ζ-class uses Cd(II) or Zn(II) to perform the physiologic reaction catalysis. Bacteria encode for enzymes belonging to the α-, β-, and γ-CA classes. They contain zinc ion (Zn(2+)) in their active site, coordinated by three histidine residues and a water molecule/hydroxide ion (in the α and γ) or by two cysteine and one histidine residues (in the β class), with the fourth ligand being a water molecule/hydroxide ion. Here we propose that bacterial CAs can be used as markers for understanding the evolution and genetic variability of the Gram-positive and Gram-negative bacteria. We addressed several questions such as: (1) why are α-CAs present only in the genome of Gram-negative bacteria; (2) why are α-CAs not present in all Gram-negative bacteria; (3) why do Bacteria show an intricate pattern of CA gene expression; (4) what are the physiologic roles of such diverse CAs in these prokaryotes. We proposed possible answers to the previous questions. Moreover, we speculated on the evolution of the CA classes (α, β and γ) identified in the Gram-negative and -positive bacteria. Our main hypothesis is that from the ancestral Ur-CA, the γ-class arose first, followed by the β-class; the α-class CAs came last it is found only in the Gram-negative bacteria.