62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utero-vaginal aplasia (Mayer-Rokitansky-Küster-Hauser syndrome) associated with deletions in known DiGeorge or DiGeorge-like loci

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. The uterovaginal aplasia is either isolated (type I) or more frequently associated with other malformations (type II or Müllerian Renal Cervico-thoracic Somite (MURCS) association), some of which belong to the malformation spectrum of DiGeorge phenotype (DGS). Its etiology remains poorly understood. Thus the phenotypic manifestations of MRKH and DGS overlap suggesting a possible genetic link. This would potentially have clinical consequences.

          Methods

          We searched DiGeorge critical chromosomal regions for chromosomal anomalies in a cohort of 57 subjects with uterovaginal aplasia (55 women and 2 aborted fetuses). For this candidate locus approach, we used a multiplex ligation-dependent probe amplification (MLPA) assay based on a kit designed for investigation of the chromosomal regions known to be involved in DGS.

          The deletions detected were validated by Duplex PCR/liquid chromatography (DP/LC) and/or array-CGH analysis.

          Results

          We found deletions in four probands within the four chromosomal loci 4q34-qter, 8p23.1, 10p14 and 22q11.2 implicated in almost all cases of DGS syndrome.

          Conclusion

          Uterovaginal aplasia appears to be an additional feature of the broad spectrum of the DGS phenotype. The DiGeorge critical chromosomal regions may be candidate loci for a subset of MRKH syndrome (MURCS association) individuals. However, the genes mapping at the sites of these deletions involved in uterovaginal anomalies remain to be determined. These findings have consequences for clinical investigations, the care of patients and their relatives, and genetic counseling.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development.

          Neuronal gene expression is tightly regulated in developing CNS. Here, we demonstrate the anti-neural function of phosphatase SCP1 (small C-terminal domain phosphatase 1) during development. We further show that the neuron-enriched microRNA miR-124 directly targets SCP1-3' untranslated region (UTR) to suppress SCP1 expression. In developing spinal cord, expression of miR-124 and SCP1 is complementary, and miR-124 antagonism phenocopies SCP1 overexpression and vice versa. In P19 cells, miR-124 suppresses SCP1 expression and induces neurogenesis, and SCP1 counteracts this proneural activity of miR-124. Our results suggest that, during CNS development, timely down-regulation of SCP1 is critical for inducing neurogenesis, and miR-124 contributes to this process at least in part by down-regulating SCP1 expression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tankyrase, a poly(ADP-ribose) polymerase at human telomeres.

            Tankyrase, a protein with homology to ankyrins and to the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP), was identified and localized to human telomeres. Tankyrase binds to the telomeric protein TRF1 (telomeric repeat binding factor-1), a negative regulator of telomere length maintenance. Like ankyrins, tankyrase contains 24 ankyrin repeats in a domain responsible for its interaction with TRF1. Recombinant tankyrase was found to have PARP activity in vitro, with both TRF1 and tankyrase functioning as acceptors for adenosine diphosphate (ADP)-ribosylation. ADP-ribosylation of TRF1 diminished its ability to bind to telomeric DNA in vitro, suggesting that telomere function in human cells is regulated by poly(ADP-ribosyl)ation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis.

              The 22q11.2 deletion syndrome, which includes DiGeorge and velocardiofacial syndromes (DGS/VCFS), is the most common microdeletion syndrome. The majority of deleted patients share a common 3 Mb hemizygous deletion of 22q11.2. The remaining patients include those who have smaller deletions that are nested within the 3 Mb typically deleted region (TDR) and a few with rare deletions that have no overlap with the TDR. The identification of chromosome 22-specific duplicated sequences or low copy repeats (LCRs) near the end-points of the 3 Mb TDR has led to the hypothesis that they mediate deletions of 22q11.2. The entire 3 Mb TDR has been sequenced, permitting detailed investigation of the LCRs and their involvement in the 22q11.2 deletions. Sequence analysis has identified four LCRs within the 3 Mb TDR. Although the LCRs differ in content and organization of shared modules, those modules that are common between them share 97-98% sequence identity with one another. By fluorescence in situ hybridization (FISH) analysis, the end-points of four variant 22q11.2 deletions appear to localize to the LCRs. Pulsed-field gel electrophoresis and Southern hybridization have been used to identify rearranged junction fragments from three variant deletions. Analysis of junction fragments by PCR and sequencing of the PCR products implicate the LCRs directly in the formation of 22q11.2 deletions. The evolutionary origin of the duplications on chromosome 22 has been assessed by FISH analysis of non-human primates. Multiple signals in Old World monkeys suggest that the duplication events may have occurred at least 20-25 million years ago.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central
                1750-1172
                2011
                15 March 2011
                : 6
                : 9
                Affiliations
                [1 ]CNRS UMR 6061, Institut de Génétique et Développement de Rennes, IFR 140 GFAS, Faculté de Médecine, 2 avenue du Professeur Léon Bernard CS 34317, 35043 Rennes Cedex, France
                [2 ]Pôle d'Obstétrique Gynécologie et Médecine de la Reproduction, Hôpital Sud, 16 bd de Bulgarie BP 90437, 35203 Rennes Cedex, France
                [3 ]Service de Génétique Médicale, Hôpital Sud, 16 bd de Bulgarie BP 90437, 35203 Rennes Cedex, France
                [4 ]Service de Génétique Médicale, CHU de Nantes, 38 bd Jean Monnet, 44093 Nantes Cedex 1, France
                [5 ]INSERM UMR 915 - Institut du Thorax, 8 quai Moncousu BP 70721, 44007 Nantes Cedex 1, France
                [6 ]Laboratoire de Génétique Moléculaire et Hormonologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
                [7 ]Service de Pathologie, Hôpital Sud, 16 bd de Bulgarie BP 90437, 35203 Rennes Cedex, France
                [8 ]Service de Gynécologie-Obstétrique, Centre Hospitalier Intercommunal, 40 avenue de Verdun, 94000 Créteil, France
                Article
                1750-1172-6-9
                10.1186/1750-1172-6-9
                3072926
                21406098
                49fd1a62-d527-4f19-a540-98508643d9d3
                Copyright ©2011 Morcel et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 September 2010
                : 15 March 2011
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content351

                Cited by16

                Most referenced authors672