41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report a time-calibrated stratigraphic section in Colorado that contains unusually complete fossils of mammals, reptiles, and plants, and elucidates the drivers and tempo of biotic recovery during the poorly known first million years after the Cretaceous–Paleogene mass extinction (KPgE). Within ~100 thousand years (ka) post-KPgE, mammalian taxonomic richness doubled and maximum mammalian body mass increased to near pre-KPgE levels. A three-fold increase in maximum mammalian body mass and dietary niche specialization occurred at ~300 ka post-KPgE, concomitant with increased megafloral standing species richness. The appearance of additional large mammals occurred by ~700 ka post-KPgE, coincident with the first appearance of Leguminosae (bean family). These concurrent plant and mammal originations and body mass shifts coincide with warming intervals, suggesting climate influenced post-KPgE biotic recovery.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          The placental mammal ancestor and the post-K-Pg radiation of placentals.

          To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mass extinctions in the marine fossil record.

            A new compilation of fossil data on invertebrate and vertebrate families indicates that four mass extinctions in the marine realm are statistically distinct from background extinction levels. These four occurred late in the Ordovician, Permian, Triassic, and Cretaceous periods. A fifth extinction event in the Devonian stands out from the background but is not statistically significant in these data. Background extinction rates appear to have declined since Cambrian time, which is consistent with the prediction that optimization of fitness should increase through evolutionary time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary.

              The Cretaceous-Paleogene boundary approximately 65.5 million years ago marks one of the three largest mass extinctions in the past 500 million years. The extinction event coincided with a large asteroid impact at Chicxulub, Mexico, and occurred within the time of Deccan flood basalt volcanism in India. Here, we synthesize records of the global stratigraphy across this boundary to assess the proposed causes of the mass extinction. Notably, a single ejecta-rich deposit compositionally linked to the Chicxulub impact is globally distributed at the Cretaceous-Paleogene boundary. The temporal match between the ejecta layer and the onset of the extinctions and the agreement of ecological patterns in the fossil record with modeled environmental perturbations (for example, darkness and cooling) lead us to conclude that the Chicxulub impact triggered the mass extinction.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                October 24 2019
                : eaay2268
                Article
                10.1126/science.aay2268
                31649141
                49692b78-9d50-4cb8-899a-da45ed146d9b
                © 2019
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content36

                Cited by69

                Most referenced authors962