0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Puerarin alleviates inflammation and pathological damage in colitis mice by regulating metabolism and gut microbiota

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dysbiosis of gut microbiota and metabolic pathway disorders are closely related to the ulcerative colitis. Through network pharmacology, we found that puerarin is a potential ingredient that can improve the crypt deformation and inflammatory infiltration in mice, and decrease the levels of IL-1β, IL-6 and TNF-α significantly. Listeria, Alistipes and P. copri gradually became dominant bacteria in UC mice, which were positively correlated with inflammatory factors. Puerarin effectively improved dysbiosis by reducing the abundance of Alistipes, P. copri and Veillonella, and increasing the level of Desulfovibrionacea. Correlation network and metabolic function prediction analysis of the microbiota showed that they formed a tightly connected network and were widely involved in carbohydrate metabolism and amino acid metabolism. Specifically, we observed significant changes in the tryptophan metabolism pathway in DSS mice, with an increase in the abundance of Bacteroidetes and Enterobacteriaceae involved in tryptophan metabolism. However, this metabolic disorder was alleviated after puerarin treatment, including the reversal of 3-HAA levels and an increase in the abundance of Rhodobacteraceae and Halomonadaceae involved in kynurenine metabolism, as well as a significant increase in the purine metabolite guanosine. In conclusion, our study suggests that puerarin has a good therapeutic effect on UC, which is partially achieved by restoring the composition and abundance of gut microbiota and their metabolism.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokines in inflammatory bowel disease.

            Cytokines have a crucial role in the pathogenesis of inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, where they control multiple aspects of the inflammatory response. In particular, the imbalance between pro-inflammatory and anti-inflammatory cytokines that occurs in IBD impedes the resolution of inflammation and instead leads to disease perpetuation and tissue destruction. Recent studies suggest the existence of a network of regulatory cytokines that has important implications for disease progression. In this Review, we discuss the role of cytokines produced by innate and adaptive immune cells, as well as their relevance to the future therapy of IBD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gut microbiota-derived metabolites as key actors in inflammatory bowel disease

              A key role of the gut microbiota in the establishment and maintenance of health, as well as in the pathogenesis of disease, has been identified over the past two decades. One of the primary modes by which the gut microbiota interacts with the host is by means of metabolites, which are small molecules that are produced as intermediate or end products of microbial metabolism. These metabolites can derive from bacterial metabolism of dietary substrates, modification of host molecules, such as bile acids, or directly from bacteria. Signals from microbial metabolites influence immune maturation, immune homeostasis, host energy metabolism and maintenance of mucosal integrity. Alterations in the composition and function of the microbiota have been described in many studies on IBD. Alterations have also been described in the metabolite profiles of patients with IBD. Furthermore, specific classes of metabolites, notably bile acids, short-chain fatty acids and tryptophan metabolites, have been implicated in the pathogenesis of IBD. This Review aims to define the key classes of microbial-derived metabolites that are altered in IBD, describe the pathophysiological basis of these associations and identify future targets for precision therapeutic modulation.
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2374161/overviewRole: Role: Role: Role: Role: Role: Role: Role:
                Role: Role: Role: Role: Role:
                Role: Role: Role: Role:
                Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/582753/overviewRole: Role: Role: Role: Role: Role:
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                16 October 2023
                2023
                : 14
                : 1279029
                Affiliations
                State Key Laboratory of Food Science and Resources, School of Food Science, Nanchang University , Nanchang, China
                Author notes

                Edited by: Huaxi Yi, Ocean University of China, China

                Reviewed by: Xi Liang, Qingdao University, China; Youyou Lu, Huazhong Agricultural University, China

                *Correspondence: Zheng Ruan, ruanzheng@ 123456ncu.edu.cn
                Article
                10.3389/fmicb.2023.1279029
                10614640
                493f5a7a-1c61-497e-8180-4b49ec32e1d4
                Copyright © 2023 Zou, Ding, Wu, Chen and Ruan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 August 2023
                : 28 September 2023
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 47, Pages: 14, Words: 7589
                Funding
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the National Natural Science Foundation of China (32060539).
                Categories
                Microbiology
                Original Research
                Custom metadata
                Food Microbiology

                Microbiology & Virology
                puerarin,ulcerative colitis,network pharmacology,gut microbiota,untargeted metabonomics

                Comments

                Comment on this article