27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transthoracic delivery of large devices into the left ventricle through the right ventricle and interventricular septum: preclinical feasibility

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We aim to deliver large appliances into the left ventricle through the right ventricle and across the interventricular septum. This transthoracic access route exploits immediate recoil of the septum, and lower transmyocardial pressure gradient across the right versus left ventricular free wall. The route may enhance safety and allow subxiphoid rather than intercostal traversal.

          Methods

          The entire procedure was performed under real-time CMR guidance. An “active” CMR needle crossed the chest, right ventricular free wall, and then the interventricular septum to deliver a guidewire then used to deliver an 18Fr introducer. Afterwards, the right ventricular free wall was closed with a nitinol occluder. Immediate closure and late healing of the unrepaired septum and free wall were assessed by oximetry, angiography, CMR, and necropsy up to four weeks afterwards.

          Results

          The procedure was successful in 9 of 11 pigs. One failed because of refractory ventricular fibrillation upon needle entry, and the other because of inadequate guidewire support. In all ten attempts, the right ventricular free wall was closed without hemopericardium. There was neither immediate nor late shunt on oximetry, X-ray angiography, or CMR. The interventricular septal tract fibrosed completely. Transventricular trajectories planned on human CT scans suggest comparable intracavitary working space and less acute entry angles than a conventional atrial transseptal approach.

          Conclusion

          Large closed-chest access ports can be introduced across the right ventricular free wall and interventricular septum into the left ventricle. The septum recoils immediately and heals completely without repair. A nitinol occluder immediately seals the right ventricular wall. The entry angle is more favorable to introduce, for example, prosthetic mitral valves than a conventional atrial transseptal approach.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Two-year outcomes after transcatheter or surgical aortic-valve replacement.

          The Placement of Aortic Transcatheter Valves (PARTNER) trial showed that among high-risk patients with aortic stenosis, the 1-year survival rates are similar with transcatheter aortic-valve replacement (TAVR) and surgical replacement. However, longer-term follow-up is necessary to determine whether TAVR has prolonged benefits. At 25 centers, we randomly assigned 699 high-risk patients with severe aortic stenosis to undergo either surgical aortic-valve replacement or TAVR. All patients were followed for at least 2 years, with assessment of clinical outcomes and echocardiographic evaluation. The rates of death from any cause were similar in the TAVR and surgery groups (hazard ratio with TAVR, 0.90; 95% confidence interval [CI], 0.71 to 1.15; P=0.41) and at 2 years (Kaplan-Meier analysis) were 33.9% in the TAVR group and 35.0% in the surgery group (P=0.78). The frequency of all strokes during follow-up did not differ significantly between the two groups (hazard ratio, 1.22; 95% CI, 0.67 to 2.23; P=0.52). At 30 days, strokes were more frequent with TAVR than with surgical replacement (4.6% vs. 2.4%, P=0.12); subsequently, there were 8 additional strokes in the TAVR group and 12 in the surgery group. Improvement in valve areas was similar with TAVR and surgical replacement and was maintained for 2 years. Paravalvular regurgitation was more frequent after TAVR (P<0.001), and even mild paravalvular regurgitation was associated with increased late mortality (P<0.001). A 2-year follow-up of patients in the PARTNER trial supports TAVR as an alternative to surgery in high-risk patients. The two treatments were similar with respect to mortality, reduction in symptoms, and improved valve hemodynamics, but paravalvular regurgitation was more frequent after TAVR and was associated with increased late mortality. (Funded by Edwards Lifesciences; ClinicalTrials.gov number, NCT00530894.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatment of end-stage inoperable patients with calcific aortic stenosis.

            This study was done to assess the results of percutaneous heart valve (PHV) implantation in non-surgical patients with end-stage calcific aortic stenosis. Replacement of PHV has been shown to be feasible in animals and humans. We developed a PHV composed of three pericardial leaflets inserted within a balloon-expandable stainless steel stent. We report the acute and early follow-up results of the initial six PHV implantations. An anterograde approach was used in all cases. The PHV, crimped over a 22-mm diameter balloon, was advanced through a 24-F sheath from the femoral vein to the aortic valve and delivered by balloon inflation. Clinical, hemodynamic, and echocardiographic outcomes were assessed serially. All patients were in New York Heart Association functional class IV. The PHV was successfully delivered in five patients. Early migration with subsequent death occurred in one patient who presented with a torn native valve. Acute hemodynamic and angiographic results showed no residual gradient, mild (three patients) or severe (two patients) aortic regurgitation, and patent coronary arteries. On echocardiography, the aortic valve area was increased from 0.5 +/- 0.1 cm(2) to 1.70 +/- 0.03 cm(2) and the aortic regurgitation was paravalvular. Marked and sustained hemodynamic and clinical improvement was observed after successful PHV implants. The first three patients died of a non-cardiac cause at 18, 4, and 2 weeks, respectively, and the other patients are alive at 8 weeks with no signs of heart failure. Implantation of the PHV can be achieved in patients with end-stage calcific aortic stenosis and might become an important therapeutic option for patients not amenable to surgical valve replacement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transapical transcatheter aortic valve implantation in humans: initial clinical experience.

              Aortic valve replacement with cardiopulmonary bypass is currently the treatment of choice for symptomatic aortic stenosis but carries a significant risk of morbidity and mortality, particularly in patients with comorbidities. Recently, percutaneous transfemoral aortic valve implantation has been proposed as a viable alternative in selected patients. We describe our experience with a new, minimally invasive, catheter-based approach to aortic valve implantation via left ventricular apical puncture without cardiopulmonary bypass or sternotomy. A left anterolateral intercostal incision is used to expose the left ventricular apex. Direct needle puncture of the apex allows introduction of a hemostatic sheath into the left ventricle. The valve prosthesis, constructed from a stainless steel stent with an attached trileaflet equine pericardial valve, is crimped onto a valvuloplasty balloon. The prosthetic valve and balloon catheter are passed over a wire into the left ventricle. Positioning within the aortic annulus is confirmed by fluoroscopy, aortography, and echocardiography. Rapid ventricular pacing is used to reduce cardiac output while the balloon is inflated, deploying the prosthesis within the annulus. Transapical aortic valve implantation was successfully performed in 7 patients in whom surgical risk was deemed excessive because of comorbidities. Echocardiographic median aortic valve area increased from 0.7 +/- 0.1 cm2 (interquartile range) to 1.8 +/- 0.8 cm2 (interquartile range). There were no intraprocedural deaths. At a follow up of 87 +/- 56 days, 6 of 7 patients remain alive and well. This initial experience suggests that transapical aortic valve implantation without cardiopulmonary bypass is feasible in selected patients with aortic stenosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cardiovasc Magn Reson
                J Cardiovasc Magn Reson
                Journal of Cardiovascular Magnetic Resonance
                BioMed Central
                1097-6647
                1532-429X
                2013
                18 January 2013
                : 15
                : 1
                : 10
                Affiliations
                [1 ]Cardiovascular and Pulmonary Branch, Division of Intramural Research, NHLBI, NIH, Building 10, Room 2c713, MSC 1538, Bethesda, MD, 20892-1538, USA
                [2 ]Division of Veterinary Resources, NIH, Bethesda, MD, USA
                [3 ]Department of Cardiology, Children’s National Medical Center, Washington, DC, USA
                Article
                1532-429X-15-10
                10.1186/1532-429X-15-10
                4174899
                23331459
                48e02e78-033a-4af9-a8f3-aa5f904bfe05
                Copyright © 2013 Halabi et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 September 2012
                : 14 January 2013
                Categories
                Research

                Cardiovascular Medicine
                catheterization,interventional cardiovascular mr,structural heart disease

                Comments

                Comment on this article