0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: A review

      , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.

          Mucus is a viscoelastic and adhesive gel that protects the lung airways, gastrointestinal (GI) tract, vagina, eye and other mucosal surfaces. Most foreign particulates, including conventional particle-based drug delivery systems, are efficiently trapped in human mucus layers by steric obstruction and/or adhesion. Trapped particles are typically removed from the mucosal tissue within seconds to a few hours depending on anatomical location, thereby strongly limiting the duration of sustained drug delivery locally. A number of debilitating diseases could be treated more effectively and with fewer side effects if drugs and genes could be more efficiently delivered to the underlying mucosal tissues in a controlled manner. This review first describes the tenacious mucus barrier properties that have precluded the efficient penetration of therapeutic particles. It then reviews the design and development of new mucus-penetrating particles that may avoid rapid mucus clearance mechanisms, and thereby provide targeted or sustained drug delivery for localized therapies in mucosal tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure

            The ubiquity of microplastics in aquatic and terrestrial environments and related ecological impacts have gained global attention. Microplastics have been detected in table salt, drinking water, and air, posing inevitable human exposure risk. However, rigorous analytical methods for detection and characterization of microplastics remain scarce. Knowledge about the potential adverse effects on human health via dietary and respiratory exposures is also limited. To address these issues, we reviewed 46 publications concerning abundances, potential sources, and analytical methods of microplastics in table salt, drinking water, and air. We also summarized probable translocation and accumulation pathways of microplastics within human body. Human body burdens of microplastics through table salt, drinking water, and inhalation were estimated to be (0-7.3)×104, (0-4.7)×103, and (0-3.0)×107 items per person per year, respectively. The intake of microplastics via inhalation, especially via indoor air, was much higher than those via other exposure routes. Moreover, microplastics in the air impose threats to both respiratory and digestive systems through breathing and ingestion. Given the lifetime inevitable exposure to microplastics, we urgently call for a better understanding of the potential hazards of microplastics to human health.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice

                Bookmark

                Author and article information

                Contributors
                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                June 2023
                June 2023
                : 326
                : 138486
                Article
                10.1016/j.chemosphere.2023.138486
                489e3803-7d62-4c10-8538-b48c0722c069
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article