1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and verification of key taste components in wampee using widely targeted metabolomics

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Widely targeted metabolome analysis was first performed on two taste wampees.

          • Taste related indicators and differential metabolites of wampees were described.

          • Key taste metabolites were identified, potential causes were explained.

          • This work helps to understand the formation of wampee flavors.

          Abstract

          Due to the lack of comprehensive evaluation of all metabolites in wampee, the metabolic reasons for taste differences are unclear. Here, two local varieties YF1 (sweet taste) and YF2 (sweet–sour taste), were selected for quality analysis, followed by ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) based widely targeted metabolomic analysis. YF1 and YF2 were clearly separated by principal component analysis (PCA) and cluster analysis, and 449 metabolites were different between the cultivars, including 29 carbohydrates and 29 organic acids. Among them, d-galactose, d-mannose, and d-fructose 6-phosphate contributed mainly to the sweet taste of the YF1 wampee. l-citramalic acid, 2-hydroxyglutaric acid, and 3-methylmalic acid were the dominant organic acids in YF2 wampee, and therefore, contributed primarily to the sweet–sour taste. The differential metabolites were significantly enriched in the “ascorbate and aldarate metabolism” and “C5-branched dibasic acid metabolism” pathways. Ascorbate played a crucial role in the regulation of sugars and organic acids through those pathways. In addition, high-performance liquid chromatography (HPLC) based quantitative verification exhibited the same specific cultivar variations.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          KEGG for integration and interpretation of large-scale molecular data sets

          Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/ or http://www.kegg.jp/) is a database resource that integrates genomic, chemical and systemic functional information. In particular, gene catalogs from completely sequenced genomes are linked to higher-level systemic functions of the cell, the organism and the ecosystem. Major efforts have been undertaken to manually create a knowledge base for such systemic functions by capturing and organizing experimental knowledge in computable forms; namely, in the forms of KEGG pathway maps, BRITE functional hierarchies and KEGG modules. Continuous efforts have also been made to develop and improve the cross-species annotation procedure for linking genomes to the molecular networks through the KEGG Orthology system. Here we report KEGG Mapper, a collection of tools for KEGG PATHWAY, BRITE and MODULE mapping, enabling integration and interpretation of large-scale data sets. We also report a variant of the KEGG mapping procedure to extend the knowledge base, where different types of data and knowledge, such as disease genes and drug targets, are integrated as part of the KEGG molecular networks. Finally, we describe recent enhancements to the KEGG content, especially the incorporation of disease and drug information used in practice and in society, to support translational bioinformatics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics.

            Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics has been facilitated by the construction of MS(2) spectral tag (MS2T) library from the total scan ESI MS/MS data, and the development of widely targeted metabolomics method using MS/MS data gathered from authentic standards. In this report, a novel strategy called stepwise multiple ion monitoring-enhanced product ions (stepwise MIM-EPI) was developed to construct the MS2T library, in which stepwise MIM was used as survey scans to trigger the acquisition of EPI. A total number of 698 (almost) non-redundant metabolites with MS(2) spectra were obtained, of which 135 metabolites were identified/annotated. Integrating the data gathered from our MS2T library and other available multiple reaction monitoring (MRM) information, a widely targeted metabolomics method was developed to quantify 277 metabolites, including some phytohormones. Evaluation of the dehydration responses and natural variations of these metabolites in rice leaf not only suggested the coordinated regulation of abscisic acid (ABA) with metabolites such as serotonin derivative(s), polyamine conjugates under drought stress, but also revealed some C-glycosylated flavones as the potential markers for the discrimination of indica and japonica rice subspecies. The new MS2T library construction and widely targeted metabolomics strategy could be used as a tool for rice functional genomics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatio-temporal distribution and natural variation of metabolites in citrus fruits.

              To study the natural variation and spatio-temporal accumulation of citrus metabolites, liquid chromatography tandem mass spectrometry (LC-MS) based metabolome analysis was performed on four fruit tissues (flavedo, albedo, segment membrane and juice sacs) and different Citrus species (lemon, pummelo and grapefruit, sweet orange and mandarin). Using a non-targeted metabolomics approach, more than 2000 metabolite signals were detected, from which more than 54 metabolites, including amino acids, flavonoids and limonoids, were identified/annotated. Differential accumulation patterns of both primary metabolites and secondary metabolites in various tissues and species were revealed by our study. Further investigation indicated that flavedo accumulates more flavonoids while juice sacs contain more amino acids. Besides this, cluster analysis based on the levels of metabolites detected in 47 individual Citrus accessions clearly grouped them into four distinct clusters: pummelos and grapefruits, lemons, sweet oranges and mandarins, while the cluster of pummelos and grapefruits lay distinctly apart from the other three species.
                Bookmark

                Author and article information

                Contributors
                Journal
                Food Chem X
                Food Chem X
                Food Chemistry: X
                Elsevier
                2590-1575
                24 February 2022
                30 March 2022
                24 February 2022
                : 13
                : 100261
                Affiliations
                [a ]Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China
                [b ]Hainan Institute for Food Control / Key Laboratory of Tropical Fruits and Vegetables Quality Safety for State Market Regulation, Haikou 570311, China
                [c ]Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya, 572019, China
                [d ]Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Haikou 570100, China
                Author notes
                [* ]Corresponding author at: Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences / Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province, Haikou 570100, China. denghao@ 123456hnaas.org.cn
                Article
                S2590-1575(22)00059-1 100261
                10.1016/j.fochx.2022.100261
                9040002
                35499032
                48686a1e-cd93-43d5-a53d-5ad439c786d4
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 23 November 2021
                : 16 February 2022
                : 17 February 2022
                Categories
                Research Article

                wampee,sweet taste,sweet–sour taste,cultivar,metabolomics
                wampee, sweet taste, sweet–sour taste, cultivar, metabolomics

                Comments

                Comment on this article