1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Soft/Hard Controllable Conversion Galactomannan Ionic Conductive Hydrogel as a Flexible Sensor

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins.

          The development of flexible electronic skins with high sensitivities and multimodal sensing capabilities is of great interest for applications ranging from human healthcare monitoring to robotic skins to prosthetic limbs. Although piezoresistive composite elastomers have shown great promise in this area of research, typically poor sensitivities and low response times, as well as signal drifts with temperature, have prevented further development of these materials in electronic skin applications. Here, we introduce and demonstrate a design of flexible electronic skins based on composite elastomer films that contain interlocked microdome arrays and display giant tunneling piezoresistance. Our design substantially increases the change in contact area upon loading and enables an extreme resistance-switching behavior (ROFF/RON of ∼10(5)). This translates into high sensitivity to pressure (-15.1 kPa(-1), ∼0.2 Pa minimum detection) and rapid response/relaxation times (∼0.04 s), with a minimal dependence on temperature variation. We show that our sensors can sensitively monitor human breathing flows and voice vibrations, highlighting their potential use in wearable human-health monitoring systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection

            The utilization of organic devices as pressure-sensing elements in artificial intelligence and healthcare applications represents a fascinating opportunity for the next-generation electronic products. To satisfy the critical requirements of these promising applications, the low-cost construction of large-area ultra-sensitive organic pressure devices with outstanding flexibility is highly desired. Here we present flexible suspended gate organic thin-film transistors (SGOTFTs) as a model platform that enables ultra-sensitive pressure detection. More importantly, the unique device geometry of SGOTFTs allows the fine-tuning of their sensitivity by the suspended gate. An unprecedented sensitivity of 192 kPa−1, a low limit-of-detection pressure of <0.5 Pa and a short response time of 10 ms were successfully realized, allowing the real-time detection of acoustic waves. These excellent sensing properties of SGOTFTs, together with their advantages of facile large-area fabrication and versatility in detecting various pressure signals, make SGOTFTs a powerful strategy for spatial pressure mapping in practical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars.

              We report on the facile fabrication of a stretchable array of highly sensitive pressure sensors. The proposed pressure sensor consists of the top layer of Au-deposited polydimethylsiloxane (PDMS) micropillars and the bottom layer of conductive polyaniline nanofibers on a polyethylene terephthalate substrate. The sensors are operated by the changes in contact resistance between Au-coated micropillars and polyaniline according to the varying pressure. The fabricated pressure sensor exhibits a sensitivity of 2.0 kPa(-1) in the pressure range below 0.22 kPa, a low detection limit of 15 Pa, a fast response time of 50 ms, and high stability over 10000 cycles of pressure loading/unloading with a low operating voltage of 1.0 V. The sensor is also capable of noninvasively detecting human-pulse waveforms from carotid and radial artery. A 5 × 5 array of the pressure sensors on the deformable substrate, which consists of PDMS islands for sensors and the mixed thin film of PDMS and Ecoflex with embedded liquid metal interconnections, shows stable sensing of pressure under biaxial stretching by 15%. The strain distribution obtained by the finite element method confirms that the maximum strain applied to the pressure sensor in the strain-suppressed region is less than 0.04% under a 15% biaxial strain of the unit module. This work demonstrates the potential application of our proposed stretchable pressure sensor array for wearable and artificial electronic skin devices.
                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Applied Electronic Materials
                ACS Appl. Electron. Mater.
                American Chemical Society (ACS)
                2637-6113
                2637-6113
                November 23 2021
                November 03 2021
                November 23 2021
                : 3
                : 11
                : 5000-5014
                Affiliations
                [1 ]MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, China
                Article
                10.1021/acsaelm.1c00795
                485d8440-42b3-4dba-9985-4416fb6897f4
                © 2021

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article