8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ubiquitin-specific protease 3 attenuates interleukin-1β-mediated chondrocyte senescence by deacetylating forkhead box O-3 via sirtuin-3

      research-article
      a , b , b , b , c , b , b , b , * , a , *
      Bioengineered
      Taylor & Francis
      Osteoarthritis, senescence, ubiquitination, deacetylation, FOXO3, SIRT3

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Osteoarthritis (OA) affects approximately 12% of the aging Western population. The sirtuin/forkhead box O (SIRT/FOXO) signaling pathway plays essential roles in various biological processes. Despite it has been demonstrated that ubiquitin-specific protease 3 (USP3) inhibits chondrocyte apoptosis induced by interleukin (IL)-1β, the role of USP3/SIRT3/FOXO3 in the senescence of chondrocytes in OA is unclear. This study initially isolated articular chondrocytes and investigated the role of USP3 in IL-1β-induced senescence of chondrocytes. After USP3 was overexpressed or silenced by lentivirus, expressions of genes and proteins were detected using quantitative polymerase chain reaction and immunoblotting, respectively. Cell cycle analysis was performed using flow cytometry. Reactive oxygen species (ROS) levels and senescence were analyzed. Then, SIRT3 was inhibited or overexpressed to explore the underlying mechanism. We found that overexpression of USP3 hindered IL-1β-mediated cell cycle arrest, ROS generation, and chondrocyte senescence. The inhibition of SIRT3 blocked the protective effect of USP3 on cell senescence, whereas the overexpression of SIRT3 abolished USP3-silencing-induced cell senescence. Furthermore, SIRT3 attenuated cell senescence, probably by deacetylating FOXO3. USP3 upregulated SIRT3 to deacetylate FOXO3 and attenuated IL-1β-induced chondrocyte senescence. This study demonstrated that USP3 probably attenuated IL-1β-mediated chondrocyte senescence by deacetylating FOXO3 via SIRT3.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          ROS function in redox signaling and oxidative stress.

          Oxidative stress refers to elevated intracellular levels of reactive oxygen species (ROS) that cause damage to lipids, proteins and DNA. Oxidative stress has been linked to a myriad of pathologies. However, elevated ROS also act as signaling molecules in the maintenance of physiological functions--a process termed redox biology. In this review we discuss the two faces of ROS--redox biology and oxidative stress--and their contribution to both physiological and pathological conditions. Redox biology involves a small increase in ROS levels that activates signaling pathways to initiate biological processes, while oxidative stress denotes high levels of ROS that result in damage to DNA, protein or lipids. Thus, the response to ROS displays hormesis, given that the opposite effect is observed at low levels compared with that seen at high levels. Here, we argue that redox biology, rather than oxidative stress, underlies physiological and pathological conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis

            Osteoarthritis (OA) is the most common chronic disease of human joints. The basis of pathologic changes involves all the tissues forming the joint; already, at an early stage, it has the nature of inflammation with varying degrees of severity. An analysis of the complex relationships indicates that the processes taking place inside the joint are not merely a set that (seemingly) only includes catabolic effects. Apart from them, anti-inflammatory anabolic processes also occur continually. These phenomena are driven by various mediators, of which the key role is attributed to the interactions within the cytokine network. The most important group controlling the disease seems to be inflammatory cytokines, including IL-1 β , TNF α , IL-6, IL-15, IL-17, and IL-18. The second group with antagonistic effect is formed by cytokines known as anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of OA with respect to inter- and intracellular signaling pathways is still under investigation. This paper summarizes the current state of knowledge. The cytokine network in OA is put in the context of cells involved in this degenerative joint disease. The possibilities for further implementation of new therapeutic strategies in OA are also pointed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ROS and the DNA damage response in cancer

              Reactive oxygen species (ROS) are a group of short-lived, highly reactive, oxygen-containing molecules that can induce DNA damage and affect the DNA damage response (DDR). There is unequivocal pre-clinical and clinical evidence that ROS influence the genotoxic stress caused by chemotherapeutics agents and ionizing radiation. Recent studies have provided mechanistic insight into how ROS can also influence the cellular response to DNA damage caused by genotoxic therapy, especially in the context of Double Strand Breaks (DSBs). This has led to the clinical evaluation of agents modulating ROS in combination with genotoxic therapy for cancer, with mixed success so far. These studies point to context dependent outcomes with ROS modulator combinations with Chemotherapy and radiotherapy, indicating a need for additional pre-clinical research in the field. In this review, we discuss the current knowledge on the effect of ROS in the DNA damage response, and its clinical relevance.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                16 January 2022
                2022
                16 January 2022
                : 13
                : 2
                : 2017-2027
                Affiliations
                [a ]Department of Orthopedics, The First Affiliated Hospital of Soochow University; , Suzhou PR China
                [b ]Department of Orthopedics, Changzheng Hospital, Naval Medical University; , Shanghai PR China
                [c ]Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University; , Xuzhou Jiangsu, PR China
                Author notes
                CONTACT Yao- [* ]Zeng Xu xuyaozeng@ 123456163.com Department of Orthopedics, The First Affiliated Hospital of Soochow University; , No. 899, Pinghai Road, Gusu District, Suzhou City 215006, Jiangsu Province, China; Qi- [** ]Rong Qian zqgj@ 123456smmu.edu.cn , or qianqr@ 123456smmu.edu.cn Department of Orthopedics, Changzheng Hospital, Naval Medical University; , No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
                [*]

                First author

                Article
                2012552
                10.1080/21655979.2021.2012552
                8974216
                34847835
                48195b82-2040-4a75-861c-9ca6b88b2b8b
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 5, Tables: 1, References: 43, Pages: 11
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                osteoarthritis,senescence,ubiquitination,deacetylation,foxo3,sirt3
                Biomedical engineering
                osteoarthritis, senescence, ubiquitination, deacetylation, foxo3, sirt3

                Comments

                Comment on this article