15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nonvolatile S-alk(en)ylthio-L-cysteine derivatives in fresh onion (Allium cepa L. cultivar).

      Journal of Agricultural and Food Chemistry
      Carbon-Sulfur Lyases, metabolism, Chromatography, High Pressure Liquid, Cysteine, analogs & derivatives, analysis, Disulfides, Fusobacterium nucleatum, Mouth, microbiology, Odors, Onions, chemistry, Plant Roots, Spectrometry, Mass, Electrospray Ionization, Sulfur Compounds, Volatile Organic Compounds

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The L-cysteine derivatives (R)-2-amino-3-(methyldisulfanyl)propanoic acid (S-methylthio-L-cysteine), (R)-2-amino-3-(propyldisulfanyl)propanoic acid (S-propylthio-L-cysteine), (R)-2-amino-3-(1-propenyldisulfanyl)propanoic acid (S-(1-propenylthio)-L-cysteine), and (R)-2-amino-3-(2-propenyldisulfanyl)propanoic acid (S-allylthio-L-cysteine) were prepared from 3-[(methoxycarbonyl)dithio]-L-alanine, obtained from the reaction of L-cysteine with methoxycarbonylsulfenyl chloride. The occurrence of these S-(+)-alk(en)ylthio-L-cysteine derivatives in onion (Allium cepa L.) was proven by using UPLC-MS-ESI(+) in SRM mode. Their concentrations in fresh onion were estimated to be 0.19 mg/kg S-methylthio-L-cysteine, 0.01 mg/kg S-propylthio-L-cysteine, and 0.56 mg/kg (S-(1-propenyllthio)-L-cysteine, concentrations that are about 3000 times lower than that of isoalliin (S-(1-propenyl-S-oxo-L-cysteine). These compounds were treated with Fusobacterium nucleatum, a microorganism responsible for the formation of mouth malodor. These L-cysteine disulfides were demonstrated to predominantly produce tri- and tetrasulfides. Isoalliin is almost entirely consumed by the plant enzyme alliin lyase (EC 4.4.1.4 S-alk(en)yl-S-oxo-L-cysteine lyase) in a few seconds, but it is not transformed by F. nucleatum. This example of flavor modulation shows that the plant produces different precursors, leading to the formation of the same types of volatile sulfur compounds. Whereas the plant enzyme efficiently transforms S-alk(en)yl-S-oxo-L-cysteine, mouth bacteria are responsible for the transformation of S-alk(en)ylthio-L-cysteine.

          Related collections

          Author and article information

          Comments

          Comment on this article