11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.

          The HER2 gene, which encodes the growth factor receptor HER2, is amplified and HER2 is overexpressed in 25 to 30 percent of breast cancers, increasing the aggressiveness of the tumor. We evaluated the efficacy and safety of trastuzumab, a recombinant monoclonal antibody against HER2, in women with metastatic breast cancer that overexpressed HER2. We randomly assigned 234 patients to receive standard chemotherapy alone and 235 patients to receive standard chemotherapy plus trastuzumab. Patients who had not previously received adjuvant (postoperative) therapy with an anthracycline were treated with doxorubicin (or epirubicin in the case of 36 women) and cyclophosphamide alone (138 women) or with trastuzumab (143 women). Patients who had previously received adjuvant anthracycline were treated with paclitaxel alone (96 women) or paclitaxel with trastuzumab (92 women). The addition of trastuzumab to chemotherapy was associated with a longer time to disease progression (median, 7.4 vs. 4.6 months; P<0.001), a higher rate of objective response (50 percent vs. 32 percent, P<0.001), a longer duration of response (median, 9.1 vs. 6.1 months; P<0.001), a lower rate of death at 1 year (22 percent vs. 33 percent, P=0.008), longer survival (median survival, 25.1 vs. 20.3 months; P=0.01), and a 20 percent reduction in the risk of death. The most important adverse event was cardiac dysfunction of New York Heart Association class III or IV, which occurred in 27 percent of the group given an anthracycline, cyclophosphamide, and trastuzumab; 8 percent of the group given an anthracycline and cyclophosphamide alone; 13 percent of the group given paclitaxel and trastuzumab; and 1 percent of the group given paclitaxel alone. Although the cardiotoxicity was potentially severe and, in some cases, life-threatening, the symptoms generally improved with standard medical management. Trastuzumab increases the clinical benefit of first-line chemotherapy in metastatic breast cancer that overexpresses HER2.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer.

            The anti-human epidermal growth factor receptor 2 (HER2) humanized monoclonal antibody trastuzumab improves the outcome in patients with HER2-positive metastatic breast cancer. However, most cases of advanced disease eventually progress. Pertuzumab, an anti-HER2 humanized monoclonal antibody that inhibits receptor dimerization, has a mechanism of action that is complementary to that of trastuzumab, and combination therapy with the two antibodies has shown promising activity and an acceptable safety profile in phase 2 studies involving patients with HER2-positive breast cancer. We randomly assigned 808 patients with HER2-positive metastatic breast cancer to receive placebo plus trastuzumab plus docetaxel (control group) or pertuzumab plus trastuzumab plus docetaxel (pertuzumab group) as first-line treatment until the time of disease progression or the development of toxic effects that could not be effectively managed. The primary end point was independently assessed progression-free survival. Secondary end points included overall survival, progression-free survival as assessed by the investigator, the objective response rate, and safety. The median progression-free survival was 12.4 months in the control group, as compared with 18.5 months in the pertuzumab group (hazard ratio for progression or death, 0.62; 95% confidence interval, 0.51 to 0.75; P<0.001). The interim analysis of overall survival showed a strong trend in favor of pertuzumab plus trastuzumab plus docetaxel. The safety profile was generally similar in the two groups, with no increase in left ventricular systolic dysfunction; the rates of febrile neutropenia and diarrhea of grade 3 or above were higher in the pertuzumab group than in the control group. The combination of pertuzumab plus trastuzumab plus docetaxel, as compared with placebo plus trastuzumab plus docetaxel, when used as first-line treatment for HER2-positive metastatic breast cancer, significantly prolonged progression-free survival, with no increase in cardiac toxic effects. (Funded by F. Hoffmann-La Roche/Genentech; ClinicalTrials.gov number, NCT00567190.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Therapeutic antibodies for autoimmunity and inflammation.

              The development of therapeutic antibodies has evolved over the past decade into a mainstay of therapeutic options for patients with autoimmune and inflammatory diseases. Substantial advances in understanding the biology of human diseases have been made and tremendous benefit to patients has been gained with the first generation of therapeutic antibodies. The lessons learnt from these antibodies have provided the foundation for the discovery and development of future therapeutic antibodies. Here we review how key insights obtained from the development of therapeutic antibodies complemented by newer antibody engineering technologies are delivering a second generation of therapeutic antibodies with promise for greater clinical efficacy and safety.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 26 2013
                March 26 2013
                March 11 2013
                March 26 2013
                : 110
                : 13
                : 5145-5150
                Article
                10.1073/pnas.1220145110
                3612680
                23479652
                466953b8-2ccc-4cd4-963f-066e70167180
                © 2013
                History

                Comments

                Comment on this article