0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell death shapes cancer immunity: spotlighting PANoptosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PANoptosis represents a novel type of programmed cell death (PCD) with distinctive features that incorporate elements of pyroptosis, apoptosis, and necroptosis. PANoptosis is governed by a newly discovered cytoplasmic multimeric protein complex known as the PANoptosome. Unlike each of these PCD types individually, PANoptosis is still in the early stages of research and warrants further exploration of its specific regulatory mechanisms and primary targets. In this review, we provide a brief overview of the conceptual framework and molecular components of PANoptosis. In addition, we highlight recent advances in the understanding of the molecular mechanisms and therapeutic applications of PANoptosis. By elucidating the complex crosstalk between pyroptosis, apoptosis and necroptosis and summarizing the functional consequences of PANoptosis with a special focus on the tumor immune microenvironment, this review aims to provide a theoretical basis for the potential application of PANoptosis in cancer therapy.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a Gasdermin

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The inflammasomes.

            Inflammasomes are molecular platforms activated upon cellular infection or stress that trigger the maturation of proinflammatory cytokines such as interleukin-1beta to engage innate immune defenses. Strong associations between dysregulated inflammasome activity and human heritable and acquired inflammatory diseases highlight the importance this pathway in tailoring immune responses. Here, we comprehensively review mechanisms directing normal inflammasome function and its dysregulation in disease. Agonists and activation mechanisms of the NLRP1, NLRP3, IPAF, and AIM2 inflammasomes are discussed. Regulatory mechanisms that potentiate or limit inflammasome activation are examined, as well as emerging links between the inflammasome and pyroptosis and autophagy. 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The molecular machinery of regulated cell death

              Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
                Bookmark

                Author and article information

                Contributors
                yong.teng@emory.edu
                Journal
                J Exp Clin Cancer Res
                J Exp Clin Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                15 June 2024
                15 June 2024
                2024
                : 43
                : 168
                Affiliations
                [1 ]National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy, Chongqing University of Arts and Sciences, ( https://ror.org/01rcvq140) Chongqing, 402160 People’s Republic of China
                [2 ]Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, ( https://ror.org/02j15s898) Atlanta, GA 30322 USA
                [3 ]GRID grid.189967.8, ISNI 0000 0001 0941 6502, Department of Hematology and Medical Oncology, , Winship Cancer Institute, Emory University School of Medicine, ; 201 Dowman Dr, Atlanta, GA 30322 USA
                Author information
                http://orcid.org/0000-0002-1856-7289
                Article
                3089
                10.1186/s13046-024-03089-6
                11179218
                38877579
                45c29a3d-51e1-47de-adc0-236946d71c61
                © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 26 March 2024
                : 5 June 2024
                Categories
                Review
                Custom metadata
                © Italian National Cancer Institute ‘Regina Elena’ 2024

                Oncology & Radiotherapy
                panoptosis,panoptosome,immunogenic cell death,cell death forms,antitumor immunity

                Comments

                Comment on this article