15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Updating species diversity of Colletotrichum, with a phylogenomic overview

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Colletotrichum includes important plant pathogens, endophytes, saprobes and human pathogens. Even though the polyphasic approach has facilitated Colletotrichum species identification, knowledge of the overall species diversity and host distribution is largely incomplete. To address this, we examined 952 Colletotrichum strains isolated from plants representing 322 species from 248 genera, or air and soil samples, from 87 locations in China, as well as 56 strains from Saudi Arabia, Thailand, Turkey, and the UK. Based on morphological characteristics and multi-locus phylogenetic analyses, the strains were assigned to 107 species, including 30 new species described in this paper and 18 new records for China. The currently most comprehensive backbone tree of Colletotrichum, comprising 16 species complexes (including a newly introduced C. bambusicola species complex) and 15 singleton species, is provided. Based on these analyses, 280 species with available molecular data are accepted in this genus, of which 139 have been reported in China, accounting for 49.6 % of the species. Colletotrichum siamense, C. karsti, C. fructicola, C. truncatum, C. fioriniae, and C. gloeosporioides were the most commonly detected species in China, as well as the species with the broadest host range. By contrast, 76 species were currently found to be associated with a single plant species or genus in China. To date, 33 Colletotrichum species have been exclusively reported as endophytes. Furthermore, we generated and assembled whole-genome sequences of the 30 new and a further 18 known species. The most comprehensive genome tree comprising 94 Colletotrichum species based on 1 893 single-copy orthologous genes was hence generated, with all nodes, except four, supported by 100 % bootstrap values. Collectively, this study represents the most comprehensive investigation of Colletotrichum diversity and host occurrence to date, and greatly enhances our understanding of the diversity and phylogenetic relationships in this genus.

          Taxonomic novelties: New species: Colletotrichum arecacearum F. Liu, Z.Y. Ma & L. Cai, Colletotrichum bicoloratum F. Liu, W.P. Wu & L. Cai, Colletotrichum bromeliacearum F. Liu & L. Cai, Colletotrichum buxi F. Liu, W.P. Wu & L. Cai, Colletotrichum chamaedoreae F. Liu, W.P. Wu & L. Cai, Colletotrichum crousii F. Liu, Z.Y. Ma & L. Cai, Colletotrichum danxiashanense F. Liu, W.P. Wu & L. Cai, Colletotrichum diversisporum F. Liu, W.P. Wu & L. Cai, Colletotrichum diversum F. Liu & L. Cai, Colletotrichum dolichoconidiophori F. Liu, W.P. Wu & L. Cai, Colletotrichum iris F. Liu & L. Cai, Colletotrichum monsterae F. Liu, W.P. Wu & L. Cai, Colletotrichum multiseptatum F. Liu, W.P. Wu & L. Cai, Colletotrichum nageiae F. Liu, W.P. Wu & L. Cai, Colletotrichum obovoides F. Liu & L. Cai, Colletotrichum parabambusicola F. Liu, W.P. Wu & L. Cai, Colletotrichum paraendophytum F. Liu, W.P. Wu & L. Cai, Colletotrichum reniforme F. Liu, Z.Y. Ma & L. Cai, Colletotrichum schimae F. Liu, W.P. Wu & L. Cai, Colletotrichum shivasii F. Liu & L. Cai, Colletotrichum sinuatum F. Liu, W.P. Wu & L. Cai, Colletotrichum subacidae F. Liu, Z.Y. Ma & L. Cai, Colletotrichum subsalicis F. Liu & L. Cai, Colletotrichum subvariabile F. Liu, W.P. Wu & L. Cai, Colletotrichum syngoniicola F. Liu, Z.Y. Ma & L. Cai, Colletotrichum telosmae F. Liu, W.P. Wu & L. Cai, Colletotrichum tibetense F. Liu & L. Cai, Colletotrichum variabile F. Liu, W.P. Wu & L. Cai, Colletotrichum zhaoqingense F. Liu & L. Cai, Colletotrichum zhejiangense F. Liu, W.P. Wu & L. Cai.

          Citation: Liu F, Ma ZY, Hou LW, Diao YZ, Wu WP, Damm U, Song S, Cai L (2022). Updating species diversity of Colletotrichum, with a phylogenomic overview. Studies in Mycology 101: 1–56. doi: 10.3114/sim.2022.101.01

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

            We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

              Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Journal
                Stud Mycol
                Stud Mycol
                Studies in Mycology
                Studies in Mycology
                Westerdijk Fungal Biodiversity Institute
                0166-0616
                1872-9797
                11 January 2022
                July 2022
                : 101
                : 1-56
                Affiliations
                [1 ] State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
                [2 ] University of Chinese Academy of Sciences, Beijing, 100049, China
                [3 ] Novozymes China, No. 14, Xinxi Rd, Shangdi, Beijing, China
                [4 ] Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
                Author notes
                [#]

                These authors contributed equally to this work

                * Corresponding author: Lei Cai, cail@ 123456im.ac.cn

                Corresponding editor: Robert A. Samson

                Article
                10.3114/sim.2022.101.01
                9365046
                36059896
                45849f28-c623-4ecc-a35c-cf366e7e513e
                © 2022 Westerdijk Fungal Biodiversity Institute

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/bync-nd/4.0/).

                History
                : 27 July 2021
                : 11 October 2021
                Categories
                Article

                Plant science & Botany
                backbone tree,fungal systematics,multi-locus phylogeny,new taxa,phylogenomics,plant pathogen,taxonomy

                Comments

                Comment on this article