Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
10
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A strategy for successful integration of DNA-based methods in aquatic monitoring

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Metabarcoding and Metagenomics
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in molecular biomonitoring open new horizons for aquatic ecosystem assessment. Rapid and cost-effective methods based on organismal DNA or environmental DNA (eDNA) now offer the opportunity to produce inventories of indicator taxa that can subsequently be used to assess biodiversity and ecological quality. However, the integration of these new DNA-based methods into current monitoring practices is not straightforward, and will require coordinated actions in the coming years at national and international levels. To plan and stimulate such an integration, the European network DNAqua-Net (COST Action CA15219) brought together international experts from academia, as well as key environmental biomonitoring stakeholders from different European countries. Together, this transdisciplinary consortium developed a roadmap for implementing DNA-based methods with a focus on inland waters assessed by the EU Water Framework Directive (2000/60/EC). This was done through a series of online workshops held in April 2020, which included fifty participants, followed by extensive synthesis work. The roadmap is organised around six objectives: 1) to highlight the effectiveness and benefits of DNA-based methods, 2) develop an adaptive approach for the implementation of new methods, 3) provide guidelines and standards for best practice, 4) engage stakeholders and ensure effective knowledge transfer, 5) support the environmental biomonitoring sector to achieve the required changes, 6) steer the process and harmonise efforts at the European level. This paper provides an overview of the forum discussions and the common European views that have emerged from them, while reflecting the diversity of situations in different countries. It highlights important actions required for a successful implementation of DNA-based biomonitoring of aquatic ecosystems by 2030.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Environmental DNA.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing.

            Biological monitoring has failed to develop from simple binary assessment outcomes of the impacted/unimpacted type, towards more diagnostic frameworks, despite significant scientific effort over the past fifty years. It is our assertion that this is largely because of the limited information content of biological samples processed by traditional morphology-based taxonomy, which is a slow, imprecise process, focused on restricted groups of organisms. We envision a new paradigm in ecosystem assessment, which we refer to as ‘Biomonitoring 2.0’. This new schema employs DNA-based identification of taxa, coupled with high-throughput DNA sequencing on next-generation sequencing platforms. We discuss the transformational nature of DNA-based approaches in biodiversity discovery and ecosystem assessment and outline a path forward for their future widespread application.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems.

              The bioassessment of aquatic ecosystems is currently based on various biotic indices that use the occurrence and/or abundance of selected taxonomic groups to define ecological status. These conventional indices have some limitations, often related to difficulties in morphological identification of bioindicator taxa. Recent development of DNA barcoding and metabarcoding could potentially alleviate some of these limitations, by using DNA sequences instead of morphology to identify organisms and to characterize a given ecosystem. In this paper, we review the structure of conventional biotic indices, and we present the results of pilot metabarcoding studies using environmental DNA to infer biotic indices. We discuss the main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices. We present some future developments to fully exploit the potential of metabarcoding data and improve the accuracy and precision of their analysis. We also propose some recommendations for the future integration of DNA metabarcoding to routine biomonitoring programs.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Metabarcoding and Metagenomics
                MBMG
                Pensoft Publishers
                2534-9708
                July 20 2022
                July 20 2022
                : 6
                Article
                10.3897/mbmg.6.85652
                44bbf7e0-d118-4030-b730-4a8be9671b90
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article