Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recommendations for the preservation of environmental samples in diatom metabarcoding studies

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Implementation of DNA metabarcoding for diatoms for environmental monitoring is now moving from a research to an operational phase, requiring rigorous guidelines and standards. In particular, the first steps of the diatom metabarcoding process, which consist of sampling and storage, have been addressed in various ways in scientific and pilot studies and now need to be rationalised. The objective of this study was to compare three currently applied preservation protocols through different storage durations (ranging from one day to one year) for phytobenthos and phytoplankton samples intended for diatom DNA metabarcoding analysis. The experimental design used samples from four freshwater and two marine sites of diverse ecological characteristics. The impact of the sample preservation and storage duration was assessed through diatom metabarcoding endpoints: DNA quality and quantity, diversity and richness, diatom assemblage composition and ecological index values (for freshwater samples). The yield and quality of extracted DNA only decreased for freshwater phytobenthos samples preserved with ethanol. Diatom diversity was not affected and their taxonomic composition predominantly reflected the site origin. Only rare taxa (< 100 reads) differed among preservation methods and storage durations. For biomonitoring purposes, freshwater ecological index values were not affected by the preservation method and storage duration tested (including ethanol preservation), all treatments returning the same ecological status for a site. This study contributes to consolidating diatom metabarcoding. Thus, accompanied by operational standards, the method will be ready to be confidently deployed and prescribed in future regulatory monitoring.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

          The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

            mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.

              Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Metabarcoding and Metagenomics
                MBMG
                Pensoft Publishers
                2534-9708
                November 24 2022
                November 24 2022
                : 6
                Article
                10.3897/mbmg.6.85844
                4e87130e-75d6-452a-b221-3ab54640f268
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content458

                Cited by5

                Most referenced authors1,818