2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of abscisic acid on growth and selenium uptake in medicinal plant Perilla frutescens

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to explore the effects of abscisic acid (ABA) on growth and selenium (Se) absorption of the medicinal plant, Perilla frutescens. A pot experiment was conducted to evaluate the effects of different ABA concentrations (0, 1, 5, 10 and 20 μmol/L) on the physiological characteristics and Se absorption capacity of P. frutescens. Application of 5, 10 and 20 μmol/L ABA increased the shoot biomass of P. frutescens, and only 5 and 10 μmol/L ABA increased the root biomass. Application of 5, 10, and 20 μmol/L ABA increased the contents of photosynthetic pigments (chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), superoxide dismutase activity, peroxidase activity, and soluble protein content of P. frutescens, and decreased the malondialdehyde content in P. frutescens. Only 5 and 10 μmol/L ABA used in the present study increased the catalase activity of P. frutescens. For the Se uptake, only 5 μmol/L ABA increased the Se content, Se extraction and Se bioconcentration factor of both roots and shoots. The findings of the present study indicate that 5 and 10 μmol/L ABA promotes the growth of P. frutescens, whereas 5 μmol/L ABA enhances the Se accumulation capacity in P. frutescens.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

            Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review of selenium toxicity in the aquatic food chain.

              In many environmental contaminant situations selenium has become the primary element of concern because of its bioaccumulative nature in food webs. Initial concerns about selenium were related to fish kills at Belews Lake, NC, Martin Lake, TX, and Kesterson Reservoir, CA, and to bird deformities at Kesterson Reservoir. Additional concerns were identified under the National Irrigation Water Quality Program at Salton Sea, CA, Kendrick, WY, Stewart Lake, UT, and Grand Valley and Uncompahgre Valley, CO. Recent studies have raised concerns about selenium impacts on aquatic resources in Southeastern Idaho and British Columbia. The growing discomfort among the scientific community with a waterborne criterion has lead the US Environment Protection Agency to consider a tissue-based criterion for selenium. Some aquatic ecosystems have been slow to recover from selenium contamination episodes. In recent years, non-governmental researchers have been proposing relatively high selenium thresholds in diet and tissue relative to those proposed by governmental researchers. This difference in opinions is due in part to the selection of datasets and caveats in selecting scientific literature. In spite of the growing selenium literature, there are needs for additional research on neglected organisms. This review also discusses the interaction of selenium with other elements, inconsistent effects of selenium on survival and growth of fish, and differences in depuration rates and sensitivity among species. Copryright 2004 Elsevier B.V.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 October 2022
                2022
                : 17
                : 10
                : e0275813
                Affiliations
                [001] College of Traditional Chinese Medicine and Rehabilitation, Ya’an Polytechnic College, Ya’an, Sichuan, China
                United Arab Emirates University, UNITED ARAB EMIRATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-7136-7385
                Article
                PONE-D-22-20189
                10.1371/journal.pone.0275813
                9543941
                36206244
                4466a865-8bdd-43c4-abd5-64dd52aaad87
                © 2022 Renyan Liao

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 July 2022
                : 24 September 2022
                Page count
                Figures: 0, Tables: 7, Pages: 12
                Funding
                The author(s) received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Chloroplasts
                Chlorophyll
                Biology and Life Sciences
                Cell Biology
                Plant Cell Biology
                Chloroplasts
                Chlorophyll
                Biology and Life Sciences
                Plant Science
                Plant Cell Biology
                Chloroplasts
                Chlorophyll
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Plant Cells
                Chloroplasts
                Chlorophyll
                Biology and Life Sciences
                Cell Biology
                Plant Cell Biology
                Plant Cells
                Chloroplasts
                Chlorophyll
                Biology and Life Sciences
                Plant Science
                Plant Cell Biology
                Plant Cells
                Chloroplasts
                Chlorophyll
                Physical Sciences
                Materials Science
                Materials
                Pigments
                Organic Pigments
                Chlorophyll
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Leaves
                Research and Analysis Methods
                Mathematical and Statistical Techniques
                Statistical Methods
                Analysis of Variance
                Physical Sciences
                Mathematics
                Statistics
                Statistical Methods
                Analysis of Variance
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Dismutases
                Superoxide Dismutase
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Dismutases
                Superoxide Dismutase
                Physical Sciences
                Materials Science
                Materials
                Pigments
                Biology and Life Sciences
                Biochemistry
                Antioxidants
                Physical Sciences
                Materials Science
                Materials
                Pigments
                Organic Pigments
                Carotenoids
                Physical Sciences
                Chemistry
                Chemical Elements
                Cadmium
                Custom metadata
                All relevant data are within the paper and its Supporting information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article