14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Volatile Compounds and Total Phenolic Content of Perilla frutescens at Microgreens and Mature Stages

      , , , , , , ,
      Horticulturae
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microgreens are considered products of high biological value because they contain natural and beneficial metabolites and antioxidants in high amounts; also, consumers appreciate them very much for their aromas. In this work, we focused our attention on the volatile organic compounds (VOCs) emitted from whole fresh leaves of two Chinese basil varieties (Perilla frutescens var. frutescens and var. crispa) at the microgreens stage; to show that the emission is microgreens specific we tested whether this capacity remains during subsequent growth of the plants. We found differences between the VOCs produced by the leaves of the two varieties at the microgreens stage and significantly reduced emission after development (additional four weeks of growth) particularly for the green variety (var. frutescens). The main volatiles emitted by whole leaves were D-Limonene for the red variety (crispa) and 2-Hexanoylfuran for the green one. In addition, the total phenolic content (TPC) and antioxidant power increase in adult leaves. These results clearly indicate that the particular smell of microgreens Perilla leaves depends on the specific variety and is not related to the amount of total phenols or antioxidant capacity of the leaves.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.

          A simple, automated test measuring the ferric reducing ability of plasma, the FRAP assay, is presented as a novel method for assessing "antioxidant power." Ferric to ferrous ion reduction at low pH causes a colored ferrous-tripyridyltriazine complex to form. FRAP values are obtained by comparing the absorbance change at 593 nm in test reaction mixtures with those containing ferrous ions in known concentration. Absorbance changes are linear over a wide concentration range with antioxidant mixtures, including plasma, and with solutions containing one antioxidant in purified form. There is no apparent interaction between antioxidants. Measured stoichiometric factors of Trolox, alpha-tocopherol, ascorbic acid, and uric acid are all 2.0; that of bilirubin is 4.0. Activity of albumin is very low. Within- and between-run CVs are <1.0 and <3.0%, respectively, at 100-1000 micromol/liter. FRAP values of fresh plasma of healthy Chinese adults: 612-1634 micromol/liter (mean, 1017; SD, 206; n = 141). The FRAP assay is inexpensive, reagents are simple to prepare, results are highly reproducible, and the procedure is straightforward and speedy. The FRAP assay offers a putative index of antioxidant, or reducing, potential of biological fluids within the technological reach of every laboratory and researcher interested in oxidative stress and its effects.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Superoxide dismutase: improved assays and an assay applicable to acrylamide gels.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Biochemistry of plant volatiles.

                Bookmark

                Author and article information

                Contributors
                Journal
                Horticulturae
                Horticulturae
                MDPI AG
                2311-7524
                January 2022
                January 12 2022
                : 8
                : 1
                : 71
                Article
                10.3390/horticulturae8010071
                b926fa53-e3bc-4644-9d7e-5136d9a4b76f
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article