93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Membrane protein megahertz crystallography at the European XFEL.

      1 , 2 , 3 , 1 , 2 , 4 , 5 , 1 , 2 , 1 , 2 , 1 , 6 , 5 , 5 , 5 , 7 , 8 , 4 , 4 , 5 , 1 , 2 , 1 , 2 , 9 , 5 , 10 , 11 , 5 , 5 , 1 , 2 , 1 , 2 , 1 , 2 , 4 , 4 , 4 , 4 , 4 , 4 , 4 , 12 , 1 , 2 , 13 , 14 , 6 , 4 , 4 , 15 , 16 , 17 , 18 , 19 , 4 , 1 , 1 , 2 , 4 , 20 , 1 , 5 , 21 , 4 , 22 , 4 , 12 , 1 , 2 , 9 , 22 , 4 , 4 , 1 , 2 , 4 , 4 , 16 , 22 , 4 , 5 , 5 , 22 , 19 , 4 , 4 , 4 , 4 , 5 , 4 , 4 , 5 , 1 , 2 , 1 , 6 , 5 , 10 , 11 , 5 , 1 , 6 , 19 , 1 , 2 , 22 , 1 , 2 , 4 , 23 , 24 , 25 , 26 , 27 , 28
      Nature communications
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world's first superconducting megahertz repetition rate hard X-ray free-electron laser (XFEL), the European XFEL, began operation in 2017, featuring a unique pulse train structure with 886 ns between pulses. With its rapid pulse rate, the European XFEL may alleviate some of the increasing demand for XFEL beamtime, particularly for membrane protein serial femtosecond crystallography (SFX), leveraging orders-of-magnitude faster data collection. Here, we report the first membrane protein megahertz SFX experiment, where we determined a 2.9 Å-resolution SFX structure of the large membrane protein complex, Photosystem I, a > 1 MDa complex containing 36 protein subunits and 381 cofactors. We address challenges to megahertz SFX for membrane protein complexes, including growth of large quantities of crystals and the large molecular and unit cell size that influence data collection and analysis. The results imply that megahertz crystallography could have an important impact on structure determination of large protein complexes with XFELs.

          Related collections

          Author and article information

          Journal
          Nat Commun
          Nature communications
          Springer Science and Business Media LLC
          2041-1723
          2041-1723
          Nov 04 2019
          : 10
          : 1
          Affiliations
          [1 ] Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA.
          [2 ] School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA.
          [3 ] Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
          [4 ] European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
          [5 ] Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
          [6 ] Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA.
          [7 ] Hauptman-Woodward Institute, 700 Ellicott St, Buffalo, NY, 14203-1102, USA.
          [8 ] Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, 700 Ellicott St, Buffalo, NY, 14203-1102, USA.
          [9 ] Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, 94025, CA, USA.
          [10 ] Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
          [11 ] The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
          [12 ] Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607, Hamburg, Germany.
          [13 ] Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany.
          [14 ] Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
          [15 ] Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary.
          [16 ] Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996.
          [17 ] Program in Energy Science and Engineering, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996.
          [18 ] Department of Microbiology, University of Tennessee at Knoxville, Knoxville, TN, USA, 37996.
          [19 ] Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550, USA.
          [20 ] University of Southampton, University Rd, Southampton, SO17 1BJ, UK.
          [21 ] Hamburg University of Technology, Vision Systems E-2, Harburger Schloßstraße 20, 21079, Hamburg, Germany.
          [22 ] Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave, Milwaukee, WI, 53211, USA.
          [23 ] Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia.
          [24 ] Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA. pfromme@asu.edu.
          [25 ] School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287-1604, USA. pfromme@asu.edu.
          [26 ] Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287-5001, USA. N.Zatsepin@latrobe.edu.au.
          [27 ] Department of Physics, Arizona State University, Tempe, AZ, 85287-1504, USA. N.Zatsepin@latrobe.edu.au.
          [28 ] ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Victoria, Australia. N.Zatsepin@latrobe.edu.au.
          Article
          10.1038/s41467-019-12955-3
          10.1038/s41467-019-12955-3
          6828683
          31685819
          443657f8-d742-427f-988f-6e0e445b4f01
          History

          Comments

          Comment on this article