71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Cell Traction Force Microscopy to Study Multi-Cellular System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traction forces exerted by adherent cells on their microenvironment can mediate many critical cellular functions. Accurate quantification of these forces is essential for mechanistic understanding of mechanotransduction. However, most existing methods of quantifying cellular forces are limited to single cells in isolation, whereas most physiological processes are inherently multi-cellular in nature where cell-cell and cell-microenvironment interactions determine the emergent properties of cell clusters. In the present study, a robust finite-element-method-based cell traction force microscopy technique is developed to estimate the traction forces produced by multiple isolated cells as well as cell clusters on soft substrates. The method accounts for the finite thickness of the substrate. Hence, cell cluster size can be larger than substrate thickness. The method allows computing the traction field from the substrate displacements within the cells' and clusters' boundaries. The displacement data outside these boundaries are not necessary. The utility of the method is demonstrated by computing the traction generated by multiple monkey kidney fibroblasts (MKF) and human colon cancerous (HCT-8) cells in close proximity, as well as by large clusters. It is found that cells act as individual contractile groups within clusters for generating traction. There may be multiple of such groups in the cluster, or the entire cluster may behave a single group. Individual cells do not form dipoles, but serve as a conduit of force (transmission lines) over long distances in the cluster. The cell-cell force can be either tensile or compressive depending on the cell-microenvironment interactions.

          Author Summary

          Adherent cells sense, transduce and respond to their microenvironment by generating traction forces on their surroundings. To accurately understand these mechanotransduction processes, it is critical to have a robust and reliable method for traction force visualization and quantification. However, most cell traction force microscopy methods are limited to only single cell traction force analysis. Considering that most physiological processes are essentially collective multi-cellular events, there is a need for traction force microscopy methods capable of analyzing traction forces resulting from multiple cells. We have developed a novel and robust multi-cellular traction force microscopy method for computing cell traction on soft substrates, and applied it to compute traction field generated by both multiple cells and cell clusters. We verified the accuracy, robustness, and efficiency of the method by theoretical, numerical and experimental approaches. Our method provides a powerful toolset to pursue the mechanistic understanding of collective biological activities, such as cancer metastasis and neuromuscular interactions.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nonlinear Elasticity in Biological Gels

          Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Silicone rubber substrata: a new wrinkle in the study of cell locomotion.

            When tissue cells are cultured on very thin sheets of cross-linked silicone fluid, the traction forces the cells exert are made visible as elastic distortion and wrinkling of this substratum. Around explants this pattern of wrinkling closely resembles the "center effects" long observed in plasma clots and traditionally attributed to dehydration shrinkage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A hitchhiker's guide to mechanobiology.

              More than a century ago, it was proposed that mechanical forces could drive tissue formation. However, only recently with the advent of enabling biophysical and molecular technologies are we beginning to understand how individual cells transduce mechanical force into biochemical signals. In turn, this knowledge of mechanotransduction at the cellular level is beginning to clarify the role of mechanics in patterning processes during embryonic development. In this perspective, we will discuss current mechanotransduction paradigms, along with the technologies that have shaped the field of mechanobiology. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                June 2014
                5 June 2014
                : 10
                : 6
                : e1003631
                Affiliations
                [1 ]Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
                [2 ]Micro and Nanotechnology Laboratory (MNTL), University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
                University of Pennsylvania, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XT AT TAS. Performed the experiments: XT AT. Analyzed the data: XT AT SVA. Contributed reagents/materials/analysis tools: XT SVA. Wrote the paper: XT AT TAS.

                Article
                PCOMPBIOL-D-13-00424
                10.1371/journal.pcbi.1003631
                4046928
                24901766
                42a3ee9d-0592-446b-a63b-1ad44e62f260
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 March 2013
                : 3 April 2014
                Page count
                Pages: 15
                Funding
                This work was supported by NSF 10-02165, 07-25831, National Science Foundation (NSF; http://www.nsf.gov/) Science and Technology Center (STC) Emerging Behaviors in Integrated Cellular Systems (EBICS) Grant CBET-0939511 and the Interdisciplinary Innovation Initiative Program, University of Illinois, grant 12035. XT was funded at UIUC by National Science Foundation (NSF) Grant 0965918 IGERT: Training the Next Generation of Researchers in Cellular and Molecular Mechanics and BioNanotechnology. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. XT deeply appreciates the generous support from Frederic T. and Edith F. Mavis through the Mavis Future Faculty Fellowship (twice, 2010 and 2011).
                Categories
                Research Article
                Biology and Life Sciences
                Biophysics
                Biotechnology
                Biomaterials
                Computational Biology
                Engineering and Technology
                Mechanical Engineering
                Nanoengineering
                Physical Sciences
                Materials Science
                Physics
                Classical Mechanics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article