14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of α-Synuclein Multimer Stoichiometry in Complex Biological Samples by Electrophoresis

      research-article
      ,
      Analytical Chemistry
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aberrant aggregation of α-synuclein in the brain is a hallmark of Parkinson’s disease (PD). In vivo soluble α-synuclein occurs as a monomer and several multimers, the latter of which may be important for the biological function of α-synuclein. Currently, there is a lack of reproducible methods to compare α-synuclein multimer abundance between complex biological samples. Here we developed a method, termed “multimer-PAGE,” that combines in-gel chemical cross-linking with several common electrophoretic techniques to measure the stoichiometry of soluble α-synuclein multimers in brain tissue lysates. Results show that soluble α-synuclein from the rat brain exists as several high molecular weight species of approximately 56 kDa (αS56), 80 kDa (αS80), and 100 kDa (αS100) that comigrate with endogenous lipids, detergents, and/or micelles during blue native gel electrophoresis (BN-PAGE). Co-extraction of endogenous lipids with α-synuclein was essential for the detection of soluble α-synuclein multimers. Homogenization of brain tissue in small buffer volumes (>50 mg tissue per 1 mL buffer) increased relative lipid extraction and subsequently resulted in abundant soluble multimer detection via multimer-PAGE. α-Synuclein multimers captured by directly cross-linking soluble lysates resembled those observed following multimer-PAGE. The ratio of multimer (αS80) to monomer (αS17) increased linearly with protein input into multimer-PAGE, suggesting to some extent, multimers were also formed during electrophoresis. Overall, soluble α-synuclein maintains lipid interactions following tissue disruption and readily forms multimers when this lipid–protein complex is preserved. Once the multimer-PAGE technique was validated, relative stoichiometric comparisons could be conducted simultaneously between 14 biological samples. Multimer-PAGE provides a simple inexpensive biochemical technique to study the molecular factors influencing α-synuclein multimerization.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.

          Migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) that does not correlate with formula molecular weights, termed "gel shifting," appears to be common for membrane proteins but has yet to be conclusively explained. In the present work, we investigate the anomalous gel mobility of helical membrane proteins using a library of wild-type and mutant helix-loop-helix ("hairpin") sequences derived from transmembrane segments 3 and 4 of the human cystic fibrosis transmembrane conductance regulator (CFTR), including disease-phenotypic residue substitutions. We find that these hairpins migrate at rates of -10% to +30% vs. their actual formula weights on SDS-PAGE and load detergent at ratios ranging from 3.4-10 g SDS/g protein. We additionally demonstrate that mutant gel shifts strongly correlate with changes in hairpin SDS loading capacity (R(2) = 0.8), and with hairpin helicity (R(2) = 0.9), indicating that gel shift behavior originates in altered detergent binding. In some cases, this differential solvation by SDS may result from replacing protein-detergent contacts with protein-protein contacts, implying that detergent binding and folding are intimately linked. The CF-phenotypic V232D mutant included in our library may thus disrupt CFTR function via altered protein-lipid interactions. The observed interdependence between hairpin migration, SDS aggregation number, and conformation additionally suggests that detergent binding may provide a rapid and economical screen for identifying membrane proteins with robust tertiary and/or quaternary structures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation

            β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics*

              Chemical cross-linking of reactive groups in native proteins and protein complexes in combination with the identification of cross-linked sites by mass spectrometry has been in use for more than a decade. Recent advances in instrumentation, cross-linking protocols, and analysis software have led to a renewed interest in this technique, which promises to provide important information about native protein structure and the topology of protein complexes. In this article, we discuss the critical steps of chemical cross-linking and its implications for (structural) biology: reagent design and cross-linking protocols, separation and mass spectrometric analysis of cross-linked samples, dedicated software for data analysis, and the use of cross-linking data for computational modeling. Finally, the impact of protein cross-linking on various biological disciplines is highlighted.
                Bookmark

                Author and article information

                Journal
                Anal Chem
                Anal. Chem
                ac
                ancham
                Analytical Chemistry
                American Chemical Society
                0003-2700
                1520-6882
                03 March 2016
                05 April 2016
                : 88
                : 7
                : 4071-4084
                Affiliations
                [1]Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University , 259 Mack Avenue, Detroit, Michigan 48201, United States
                Author notes
                [* ]E-mail: Cr6970@ 123456wayne.edu . Phone: 1(269) 598-5451.
                Article
                10.1021/acs.analchem.6b00419
                4898865
                26937787
                41e2db8c-65dd-4495-80cf-b2233acd43b3
                Copyright © 2016 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 31 January 2016
                : 02 March 2016
                Categories
                Article
                Custom metadata
                ac6b00419
                ac-2016-004193

                Analytical chemistry
                Analytical chemistry

                Comments

                Comment on this article