15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      22q11.2 deletion syndrome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal microdeletion disorder, estimated to result mainly from de novo non-homologous meiotic recombination events occurring in approximately 1 in every 1,000 fetuses. The first description in the English language of the constellation of findings now known to be due to this chromosomal difference was made in the 1960s in children with DiGeorge syndrome, who presented with the clinical triad of immunodeficiency, hypoparathyroidism and congenital heart disease. The syndrome is now known to have a heterogeneous presentation that includes multiple additional congenital anomalies and later-onset conditions, such as palatal, gastrointestinal and renal abnormalities, autoimmune disease, variable cognitive delays, behavioural phenotypes and psychiatric illness - all far extending the original description of DiGeorge syndrome. Management requires a multidisciplinary approach involving paediatrics, general medicine, surgery, psychiatry, psychology, interventional therapies (physical, occupational, speech, language and behavioural) and genetic counselling. Although common, lack of recognition of the condition and/or lack of familiarity with genetic testing methods, together with the wide variability of clinical presentation, delays diagnosis. Early diagnosis, preferably prenatally or neonatally, could improve outcomes, thus stressing the importance of universal screening. Equally important, 22q11.2DS has become a model for understanding rare and frequent congenital anomalies, medical conditions, psychiatric and developmental disorders, and may provide a platform to better understand these disorders while affording opportunities for translational strategies across the lifespan for both patients with 22q11.2DS and those with these associated features in the general population.

          Related collections

          Most cited references227

          • Record: found
          • Abstract: found
          • Article: not found

          Rethinking schizophrenia.

          How will we view schizophrenia in 2030? Schizophrenia today is a chronic, frequently disabling mental disorder that affects about one per cent of the world's population. After a century of studying schizophrenia, the cause of the disorder remains unknown. Treatments, especially pharmacological treatments, have been in wide use for nearly half a century, yet there is little evidence that these treatments have substantially improved outcomes for most people with schizophrenia. These current unsatisfactory outcomes may change as we approach schizophrenia as a neurodevelopmental disorder with psychosis as a late, potentially preventable stage of the illness. This 'rethinking' of schizophrenia as a neurodevelopmental disorder, which is profoundly different from the way we have seen this illness for the past century, yields new hope for prevention and cure over the next two decades.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model.

            Individuals with 22q11.2 microdeletions show behavioral and cognitive deficits and are at high risk of developing schizophrenia. We analyzed an engineered mouse strain carrying a chromosomal deficiency spanning a segment syntenic to the human 22q11.2 locus. We uncovered a previously unknown alteration in the biogenesis of microRNAs (miRNAs) and identified a subset of brain miRNAs affected by the microdeletion. We provide evidence that the abnormal miRNA biogenesis emerges because of haploinsufficiency of the Dgcr8 gene, which encodes an RNA-binding moiety of the 'microprocessor' complex and contributes to the behavioral and neuronal deficits associated with the 22q11.2 microdeletion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1.

              The DiGeorge/velocardiofacial syndrome (DGS/VCFS) is a relatively common human disorder, usually associated with deletions of chromosome 22q11. The genetic basis for the wide range of developmental anomalies in the heart, glands and facial structures has been elusive. We have investigated the potential role of one candidate gene, Tbx1, which encodes a transcription factor of the T-box family, by producing a null mutation in mice. We found that mice heterozygous for the mutation had a high incidence of cardiac outflow tract anomalies, thus modeling one of the major abnormalities of the human syndrome. Moreover, Tbx1-/- mice displayed a wide range of developmental anomalies encompassing almost all of the common DGS/VCFS features, including hypoplasia of the thymus and parathyroid glands, cardiac outflow tract abnormalities, abnormal facial structures, abnormal vertebrae and cleft palate. On the basis of this phenotype in mice, we propose that TBX1 in humans is a key gene in the etiology of DGS/VCFS.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Disease Primers
                Nat Rev Dis Primers
                Springer Science and Business Media LLC
                2056-676X
                December 17 2015
                November 19 2015
                : 1
                : 1
                Article
                10.1038/nrdp.2015.71
                4900471
                27189754
                40a7dd26-cbc2-44dd-9cd4-592db27d13fc
                © 2015

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article