45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Asymmetric Switching in a Homodimeric ABC Transporter: A Simulation Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABC transporters are a large family of membrane proteins involved in a variety of cellular processes, including multidrug and tumor resistance and ion channel regulation. Advances in the structural and functional understanding of ABC transporters have revealed that hydrolysis at the two canonical nucleotide-binding sites (NBSs) is co-operative and non-simultaneous. A conserved core architecture of bacterial and eukaryotic ABC exporters has been established, as exemplified by the crystal structure of the homodimeric multidrug exporter Sav1866. Currently, it is unclear how sequential ATP hydrolysis arises in a symmetric homodimeric transporter, since it implies at least transient asymmetry at the NBSs. We show by molecular dynamics simulation that the initially symmetric structure of Sav1866 readily undergoes asymmetric transitions at its NBSs in a pre-hydrolytic nucleotide configuration. MgATP-binding residues and a network of charged residues at the dimer interface are shown to form a sequence of putative molecular switches that allow ATP hydrolysis only at one NBS. We extend our findings to eukaryotic ABC exporters which often consist of two non-identical half-transporters, frequently with degeneracy substitutions at one of their two NBSs. Interestingly, many residues involved in asymmetric conformational switching in Sav1866 are substituted in degenerate eukaryotic NBS. This finding strengthens recent suggestions that the interplay of a consensus and a degenerate NBS in eukaroytic ABC proteins pre-determines the sequence of hydrolysis at the two NBSs.

          Author Summary

          ABC transporters are a large family of membrane proteins present in all organisms. Typically, they utilize ATP hydrolysis, the most prominent biological energy source, to translocate substrates into cells (e.g., bacterial nutritient uptake) or out of cells (e.g., multidrug exporters that contribute to antimicrobial resistance in bacteria and resistance to chemotherapeutic drugs in cancer). Also clinically relevant non-transport roles have been identified among ABC proteins. ABC transporters bind two molecules of ATP but do not hydrolyze them simultaneously. Therefore, an ABC transporter that consists of two symmetric halves must temporarily adopt asymmetric conformations at the two ATP-binding sites. Such transient conformational changes are difficult to address biochemically, but may be amenable to study by simulation methods, leading to future experiments. We employ molecular dynamics simulations to study how asymmetric switching might occur in the homodimeric bacterial ABC multidrug exporter Sav1866. The simulations suggest a mechanism of conformational switching that encompasses the ATP-binding sites and their interface towards the substrate-binding site. We extend our findings to show how asymmetric residue substitutions may render the switching process non-stochastic in mammalian Sav1866-like ABC exporters. This contributes to ongoing discussions about the role of two dissimilar ATP-binding sites in clinically relevant ABC proteins.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          The ABC protein turned chloride channel whose failure causes cystic fibrosis.

          CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and mechanism of ABC transporter proteins.

            ATP-binding cassette (ABC) transporters are ubiquitous membrane proteins that couple the transport of diverse substrates across cellular membranes to the hydrolysis of ATP. The crystal structures of four ABC transporters have recently been determined. They reveal similar arrangements of the conserved ATP-hydrolyzing nucleotide-binding domains, but unrelated architectures of the transmembrane domains, with the notable exception of a common 'coupling helix' that is essential for transmitting conformational changes. The structures suggest a mechanism that rationalizes ATP-driven transport: While binding of ATP appears to trigger an outward-facing conformation, dissociation of the hydrolysis products may promote an inward-facing conformation. This basic scheme can, in principle, explain nutrient import by ABC importers and drug extrusion by ABC exporters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins.

              Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2010
                April 2010
                29 April 2010
                : 6
                : 4
                : e1000762
                Affiliations
                [1 ]Department of Biochemistry, University of Oxford, Oxford, United Kingdom
                [2 ]Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
                National Cancer Institute, United States of America
                Author notes

                Conceived and designed the experiments: JA MSPS. Performed the experiments: JA. Analyzed the data: JA. Wrote the paper: JA HdW FMA MSPS. Contributed to the writing of the paper and discussions of the analysis of the simulations: FMA.

                Article
                09-PLCB-RA-1275R2
                10.1371/journal.pcbi.1000762
                2861673
                20454684
                4072eba1-f278-483b-a076-7554dd2bd8e4
                Aittoniemi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 20 October 2009
                : 24 March 2010
                Page count
                Pages: 10
                Categories
                Research Article
                Biophysics/Membrane Proteins and Energy Transduction
                Biophysics/Theory and Simulation
                Computational Biology/Molecular Dynamics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article