258
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      On the Origin of Large Flexibility of P-glycoprotein in the Inward-facing State*

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: P-glycoprotein relies on largely unknown structural changes for its transport function.

          Results: EPR spectroscopy and simulations capture large-amplitude structural fluctuations for inward-facing P-glycoprotein.

          Conclusion: The characterized distinct dynamics of P-glycoprotein suggests mechanistic diversity of ATP-coupled transport in ABC transporters.

          Significance: Characterizing structural dynamics is a key step toward understanding the mechanism of this multidrug resistance transporter.

          Abstract

          P-glycoprotein (Pgp) is one of the most biomedically relevant transporters in the ATP binding cassette (ABC) superfamily due to its involvement in developing multidrug resistance in cancer cells. Employing molecular dynamics simulations and double electron-electron resonance spectroscopy, we have investigated the structural dynamics of membrane-bound Pgp in the inward-facing state and found that Pgp adopts an unexpectedly wide range of conformations, highlighted by the degree of separation between the two nucleotide-binding domains (NBDs). The distance between the two NBDs in the equilibrium simulations covers a range of at least 20 Å, including, both, more open and more closed NBD configurations than the crystal structure. The double electron-electron resonance measurements on spin-labeled Pgp mutants also show wide distributions covering both longer and shorter distances than those observed in the crystal structure. Based on structural and sequence analyses, we propose that the transmembrane domains of Pgp might be more flexible than other structurally known ABC exporters. The structural flexibility of Pgp demonstrated here is not only in close agreement with, but also helps rationalize, the reported high NBD fluctuations in several ABC exporters and possibly represents a fundamental difference in the transport mechanism between ABC exporters and ABC importers. In addition, during the simulations we have captured partial entrance of a lipid molecule from the bilayer into the lumen of Pgp, reaching the putative drug binding site. The location of the protruding lipid suggests a putative pathway for direct drug recruitment from the membrane.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Structure validation by Calpha geometry: phi,psi and Cbeta deviation.

          Geometrical validation around the Calpha is described, with a new Cbeta measure and updated Ramachandran plot. Deviation of the observed Cbeta atom from ideal position provides a single measure encapsulating the major structure-validation information contained in bond angle distortions. Cbeta deviation is sensitive to incompatibilities between sidechain and backbone caused by misfit conformations or inappropriate refinement restraints. A new phi,psi plot using density-dependent smoothing for 81,234 non-Gly, non-Pro, and non-prePro residues with B < 30 from 500 high-resolution proteins shows sharp boundaries at critical edges and clear delineation between large empty areas and regions that are allowed but disfavored. One such region is the gamma-turn conformation near +75 degrees,-60 degrees, counted as forbidden by common structure-validation programs; however, it occurs in well-ordered parts of good structures, it is overrepresented near functional sites, and strain is partly compensated by the gamma-turn H-bond. Favored and allowed phi,psi regions are also defined for Pro, pre-Pro, and Gly (important because Gly phi,psi angles are more permissive but less accurately determined). Details of these accurate empirical distributions are poorly predicted by previous theoretical calculations, including a region left of alpha-helix, which rates as favorable in energy yet rarely occurs. A proposed factor explaining this discrepancy is that crowding of the two-peptide NHs permits donating only a single H-bond. New calculations by Hu et al. [Proteins 2002 (this issue)] for Ala and Gly dipeptides, using mixed quantum mechanics and molecular mechanics, fit our nonrepetitive data in excellent detail. To run our geometrical evaluations on a user-uploaded file, see MOLPROBITY (http://kinemage.biochem.duke.edu) or RAMPAGE (http://www-cryst.bioc.cam.ac.uk/rampage). Copyright 2003 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Knowledge-based protein secondary structure assignment.

            We have developed an automatic algorithm STRIDE for protein secondary structure assignment from atomic coordinates based on the combined use of hydrogen bond energy and statistically derived backbone torsional angle information. Parameters of the pattern recognition procedure were optimized using designations provided by the crystallographers as a standard-of-truth. Comparison to the currently most widely used technique DSSP by Kabsch and Sander (Biopolymers 22:2577-2637, 1983) shows that STRIDE and DSSP assign secondary structural states in 58 and 31% of 226 protein chains in our data sample, respectively, in greater agreement with the specific residue-by-residue definitions provided by the discoverers of the structures while in 11% of the chains, the assignments are the same. STRIDE delineates every 11th helix and every 32nd strand more in accord with published assignments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The P-glycoprotein multidrug transporter.

              Pgp (P-glycoprotein) (ABCB1) is an ATP-powered efflux pump which can transport hundreds of structurally unrelated hydrophobic amphipathic compounds, including therapeutic drugs, peptides and lipid-like compounds. This 170 kDa polypeptide plays a crucial physiological role in protecting tissues from toxic xenobiotics and endogenous metabolites, and also affects the uptake and distribution of many clinically important drugs. It forms a major component of the blood-brain barrier and restricts the uptake of drugs from the intestine. The protein is also expressed in many human cancers, where it probably contributes to resistance to chemotherapy treatment. Many chemical modulators have been identified that block the action of Pgp, and may have clinical applications in improving drug delivery and treating cancer. Pgp substrates are generally lipid-soluble, and partition into the membrane before the transporter expels them into the aqueous phase, much like a 'hydrophobic vacuum cleaner'. The transporter may also act as a 'flippase', moving its substrates from the inner to the outer membrane leaflet. An X-ray crystal structure shows that drugs interact with Pgp within the transmembrane regions by fitting into a large flexible binding pocket, which can accommodate several substrate molecules simultaneously. The nucleotide-binding domains of Pgp appear to hydrolyse ATP in an alternating manner; however, it is still not clear whether transport is driven by ATP hydrolysis or ATP binding. Details of the steps involved in the drug-transport process, and how it is coupled to ATP hydrolysis, remain the object of intensive study.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J. Biol. Chem
                jbc
                jbc
                JBC
                The Journal of Biological Chemistry
                American Society for Biochemistry and Molecular Biology (9650 Rockville Pike, Bethesda, MD 20814, U.S.A. )
                0021-9258
                1083-351X
                28 June 2013
                8 May 2013
                8 May 2013
                : 288
                : 26
                : 19211-19220
                Affiliations
                From the []Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illnois 61801,
                [§ ]Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, and
                the []Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210
                Author notes
                [1 ] To whom correspondence may be addressed. Tel.: 615-322-3307; E-mail: hassane.mchaourab@ 123456vanderbilt.edu .
                [2 ] To whom correspondence may be addressed. Tel.: 217-244-6914; E-mail: emad@ 123456life.illinois.edu .
                Article
                M113.450114
                10.1074/jbc.M113.450114
                3696692
                23658020
                f1f43e70-9a44-4cc3-900a-74541d3973ec
                © 2013 by The American Society for Biochemistry and Molecular Biology, Inc.

                Author's Choice—Final version full access.

                Creative Commons Attribution Unported License applies to Author Choice Articles

                History
                : 3 January 2013
                : 6 May 2013
                Funding
                Funded by: National Institutes of Health
                Award ID: U54-GM087519
                Award ID: R01-CA100246
                Award ID: R01-GM086749
                Award ID: P41-GM104601
                Award ID: 5T32NS007491-12
                Categories
                Molecular Biophysics

                Biochemistry
                abc transporter,electron paramagnetic resonance (epr),membrane transport,molecular dynamics,protein dynamics,double electron electron resonance spectroscopy (deer),p-glycoprotein

                Comments

                Comment on this article