2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Smartphone-Based Portable Bio-Chemical Sensors: Exploring Recent Advancements

      , , , ,
      Chemosensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Traditionally, analytical chemistry and diagnosis relied on wet laboratories and skilled professionals utilizing sophisticated instruments for sample handling and analysis. However, with the development of novel materials and sensing techniques, there has been a significant shift towards the use of standalone sensors, allowing tests to be conducted on-site or even in real time, leading to cost- and time-efficiency. With their widespread adoption globally, smartphones have emerged as an ideal platform for such sensors, boasting extensive sensor capabilities, advanced processing power, and communication functionalities. Smartphone-based assays make use of optical and electrochemical sensors, utilizing built-in cameras, ambient light sensors, and other features for optical sensing, while the micro-USB port, Bluetooth, and wireless connection facilitate data transmission and analog voltage application for electrochemical sensing. Previous overview papers have explored smartphone-based sensing in specific domains; this review provides a comprehensive examination of recent advancements in smartphone-based sensors, encompassing both optical and electrochemical sensing methods. The review provides the fundamental principles of these sensors and their implementation using smartphones, showcases recent applications, and presents innovative designs that take advantage of the inherent functionalities and sensor capabilities of smartphones. The review concludes by offering an outlook on the prospects of smartphone-based sensing and includes a reflective section emphasizing the potential impact of sensors in chemical and biological analyses. This comprehensive resource aims to provide information to researchers and practitioners interested in using smartphones for cutting-edge analytical methodologies.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat

          Capabilities in health monitoring via capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH and concentration of both chloride and lactate.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Detection and Classification of Acoustic Scenes and Events

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Semi-Quantitative Visual Detection of Lead Ions with Smartphone via Colorimetric Paper-based Analytical Device

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CHEMO9
                Chemosensors
                Chemosensors
                MDPI AG
                2227-9040
                September 2023
                August 22 2023
                : 11
                : 9
                : 468
                Article
                10.3390/chemosensors11090468
                3fc78acb-4f7f-417b-904b-afa87b52c332
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article