46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Radiation-induced formation of purine lesions in single and double stranded DNA: revised quantification

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The formation of oxidative lesions arising from double stranded DNA damage is of major significance to chemical biology from the perspective of application to human health. The quantification of purine lesions arising from γ-radiation-induced hydroxyl radicals (HO ) has been the subject of numerous studies, with discrepancies on the measured 5′,8-cyclo-2′-deoxyadenosine (cdA) and 5′,8-cyclo-2′-deoxyguanosine (cdG) lesions reported by different groups. Here we applied an ameliorative protocol for the analysis of DNA damage with quantitative determination of these lesions via isotope dilution liquid chromatography coupled with tandem mass spectrometry. Tandem-type purine lesions were quantified along with 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dG) and 7,8-dihydro-8-oxo-2′-deoxyadenosine (8-oxo-dA) in single and double stranded DNA, generated during DNA exposure to diffusible HO radicals in the absence or presence of physiological levels of oxygen. The cdA and cdG lesions in absence of oxygen were found ~2 times higher in single than double stranded DNA, with 5′ R being ~6.5 and ~1.5 times more predominant than 5′ S in cdG and cdA, respectively. Interestingly, in the presence of 5% molecular oxygen the R/S ratios are retained with substantially decreased yields for cdA and cdG, whereas 8-oxo-dA and 8-oxo-dG remain nearly constant. The overall lesion formation follows the order: 8-oxo-dG >> 8-oxo-dA > 5′ R- cdG > 5′ R- cdA > 5′ S- cdA > 5′ S-cdG. By this method, there was a conclusive evaluation of radiation-induced DNA purine lesions.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Critical Review of rate constants for reactions of hydrated electronsChemical Kinetic Data Base for Combustion Chemistry. Part 3: Propane

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background

            People with pale skin, red hair, freckles, and an inability to tan—the “redhair/fairskin” phenotype— are at highest risk of developing melanoma, compared to all other pigmentation types 1 . Genetically, this phenotype is frequently the product of inactivating polymorphisms in the Melanocortin 1 receptor (MC1R) gene. MC1R encodes a cAMP stimulating G-protein coupled receptor that controls pigment production. Minimal receptor activity, as in redhair/fairskin polymorphisms, produces red/yellow pheomelanin pigment, while increasing MC1R activity stimulates production of black/brown eumelanin 2 . Pheomelanin has weak UV shielding capacity relative to eumelanin and has been shown to amplify UVA-induced reactive oxygen species (ROS) 3–5 . Several observations, however, complicate the assumption that melanoma risk is completely UV dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and UV signature mutations are infrequently oncogenic drivers 6 . While linkage of melanoma risk to UV exposure is beyond doubt, UV-independent events are also likely to play a significant role 1,7 . Here, we introduced into mice carrying an inactivating mutation in the Mc1r gene (who exhibit a phenotype analogous to redhair/fairskin humans), a conditional, melanocyte-targeted allele of the most commonly mutated melanoma oncogene, BRafV600E. We observed a high incidence of invasive melanomas without providing additional gene aberrations or UV exposure. To investigate the mechanism of UV-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r e/e background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1re/e mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1re/e mouse skin. These data suggest that the pheomelanin pigment pathway produces UV-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. While UV protection remains important, additional strategies may be required for optimal melanoma prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The oxidative DNA lesions 8,5'-cyclopurines accumulate with aging in a tissue-specific manner.

              Accumulation of DNA damage is implicated in aging. This is supported by the fact that inherited defects in DNA repair can cause accelerated aging of tissues. However, clear-cut evidence for DNA damage accumulation in old age is lacking. Numerous studies report measurement of DNA damage in nuclear and mitochondrial DNA from tissues of young and old organisms, with variable outcomes. Variability results from genetic differences between specimens or the instability of some DNA lesions. To control these variables and test the hypothesis that elderly organisms have more oxidative DNA damage than young organisms, we measured 8,5'-cyclopurine-2'-deoxynucleosides (cPu), which are relatively stable, in tissues of young and old wild-type and congenic progeroid mice. We found that cPu accumulate spontaneously in the nuclear DNA of wild-type mice with age and to a greater extent in DNA repair-deficient progeroid mice, with a similar tissue-specific pattern (liver > kidney > brain). These data, generated under conditions where genetic and environmental variables are controlled, provide strong evidence that DNA repair mechanisms are inadequate to clear endogenous lesions over the lifespan of mammals. The similar, although exaggerated, results obtained from progeroid, DNA repair-deficient mice and old normal mice support the conclusion that DNA damage accumulates with, and likely contributes to, aging. © 2012 The Authors. Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                20 March 2015
                2015
                : 3
                : 18
                Affiliations
                [1] 1Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche Bologna, Italy
                [2] 2Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos” Athens, Greece
                Author notes

                Edited by: Antonio Monari, Université de Lorraine, France

                Reviewed by: Andrew Kellett, Dublin City University, Ireland; Thanasis Gimisis, National and Kapodistrian University of Athens, Greece

                *Correspondence: Chryssostomos Chatgilialoglu, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Athens, Greece c.chatgilialoglu@ 123456inn.demokritos.gr ; chrys@ 123456isof.cnr.it

                This article was submitted to Chemical Biology, a section of the journal Frontiers in Chemistry

                Article
                10.3389/fchem.2015.00018
                4367438
                3ef09ea1-fecb-4f86-bf7e-38d3a6e0493c
                Copyright © 2015 Terzidis, Ferreri and Chatgilialoglu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 January 2015
                : 25 February 2015
                Page count
                Figures: 4, Tables: 1, Equations: 6, References: 17, Pages: 7, Words: 4122
                Categories
                Chemistry
                Original Research

                gamma radiation,free radicals,dna damage,cyclopurines,8-oxo-dg,lc-ms/ms

                Comments

                Comment on this article