14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of SARS‐CoV‐2 infection and its vaccines in various types of hair loss

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prevalence of hair loss has increased during COVID‐19. In this study, we review the current literature on incidence and characteristics of various types of COVID‐19‐related and COVID‐19‐vaccine‐ related hair loss including telogen effluvium, alopecia areata, friction alopecia and anagen effluvium. Regarding most of them, the more severe the infection, the more profound and prolonged the course of alopecia. However, the most important issue is reassuring the patients of the non‐serious nature of this complication, since psychological support is the most important factor in the earlier resolution of the condition.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: found

          COVID-19 cytokine storm: the interplay between inflammation and coagulation

          Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. It is associated with significant mortality, particularly in at-risk groups with poor prognostic features at hospital admission. 1 The spectrum of disease is broad but among hospitalised patients with COVID-19, pneumonia, sepsis, respiratory failure, and acute respiratory distress syndrome (ARDS) are frequently encountered complications. 1 The pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced ARDS has similarities to that of severe community-acquired pneumonia caused by other viruses or bacteria.2, 3 The overproduction of early response proinflammatory cytokines (tumour necrosis factor [TNF], IL-6, and IL-1β) results in what has been described as a cytokine storm, leading to an increased risk of vascular hyperpermeability, multiorgan failure, and eventually death when the high cytokine concentrations are unabated over time. 4 Therefore, therapeutic strategies under investigation are targeting the overactive cytokine response with anticytokine therapies or immunomodulators, but this must be balanced with maintaining an adequate inflammatory response for pathogen clearance. Activation of coagulation pathways during the immune response to infection results in overproduction of proinflammatory cytokines leading to multiorgan injury. Although the main function of thrombin is to promote clot formation by activating platelets and by converting fibrinogen to fibrin, 5 thrombin also exerts multiple cellular effects and can further augment inflammation via proteinase-activated receptors (PARs), principally PAR-1. 5 Thrombin generation is tightly controlled by negative feedback loops and physiological anticoagulants, such as antithrombin III, tissue factor pathway inhibitor, and the protein C system. 5 During inflammation, all three of these control mechanisms can be impaired, with reduced anticoagulant concentrations due to reduced production and increasing consumption. This defective procoagulant–anticoagulant balance predisposes to the development of microthrombosis, disseminated intravascular coagulation, and multiorgan failure—evidenced in severe COVID-19 pneumonia with raised d-dimer concentrations being a poor prognostic feature and disseminated intravascular coagulation common in non-survivors.1, 6 The finding of increased d-dimer levels in patients with COVID-19 has prompted questions regarding co-existence of venous thromboembolism exacerbating ventilation–perfusion mismatch, and some studies have shown that pulmonary emboli are prevalent. 7 However, due to increased risk of bleeding and despondence related to previous negative trials of endogenous anticoagulants in sepsis, clinicians might be reluctant to offer it to all. Outside of the prevention and management of venous thromboembolism, it is clear that effects of coagulation activation go beyond clotting and crosstalk between coagulation and inflammation can significantly affect disease progression and lead to poor outcome. Prophylactic dose low molecular weight heparin (LMWH) is recommended for hospitalised patients with COVID-19 to prevent venous thromboembolism and treatment dose LMWH is contemplated for those with significantly raised d-dimer concentrations due to concerns of thrombi in the pulmonary circulation; but LMWH also has anti-inflammatory properties that might be beneficial in COVID-19. In this context, it is therefore paramount to look at the role of PAR antagonists and other coagulation protease inhibitors. PAR-1 is the main thrombin receptor and mediates thrombin-induced platelet aggregation as well as the interplay between coagulation, inflammatory, and fibrotic responses, all of which are important aspects of the pathophysiology of fibroproliferative lung disease, 5 such as seen in COVID-19. Although less likely to have an effect on venous thromboembolism, PAR-1 antagonists developed as antiplatelet drugs for the treatment of cardiovascular disease, 8 might potentially attenuate the deleterious effects associated with activation of the coagulation cascade and thrombin formation. A clinically approved PAR-1 antagonist was shown to reduce levels of proinflammatory cytokines, neutrophilic lung inflammation, and alveolar leak during bacterial pneumonia and lipopolysaccharide-induced lung injury in murine models.9, 10 Moreover, the role of PAR-1 in host immunity to viruses has been investigated: in one study, PAR-1 was protective against myocarditis from coxackie virus and decreased influenza A viral loads in murine lungs, 11 while in another study, activation of PAR-1 following influenza A challenge was associated with deleterious inflammation and worsened survival, 12 suggesting the initial PAR-1 activation is required for host control of virus load but if left unabated, PAR-1-mediated inflammation results in reduced survival. The half-life of vorapaxar, might be considered too prolonged in the context of managing acute illness, especially without a known reversal agent for its antiplatelet effect and the associated bleeding risk. However, it is important to note that in clinical trials of vorapaxar, most participants received both aspirin and a thienopyridine at enrolment, 8 and PAR-1 antagonists (eg, RWJ58259), which never progressed to clinical trials, have short half-lives and could be revisited. Antithrombin and antifactor Xa direct oral anticoagulants are well established in the prevention and management of venous thromboembolism, and since thrombin is the main activator of PAR-1, and coagulation factor Xa can induce production of proinflammatory cytokines via activation of PAR-2 and PAR-1, 5 these drugs might be promising in ameliorating disease progression and severity of COVID-19. Bleeding risk will always be a concern, but in this procoagulant state the benefits might outweigh the risk and reversal drugs for the anticoagulant effects of these inhibitors now exist. Targeting thrombin, coagulation factor Xa or PAR-1, might therefore be an attractive approach to reduce SARS-CoV-2 microthrombosis, lung injury, and associated poor outcomes. © 2020 NASA Worldview, Earth Observing System Data and Information System (EOSDIS)/Science Photo Library 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Long COVID: An overview

            Background and aims Long COVID is the collective term to denote persistence of symptoms in those who have recovered from SARS-CoV-2 infection. Methods WE searched the pubmed and scopus databases for original articles and reviews. Based on the search result, in this review article we are analyzing various aspects of Long COVID. Results Fatigue, cough, chest tightness, breathlessness, palpitations, myalgia and difficulty to focus are symptoms reported in long COVID. It could be related to organ damage, post viral syndrome, post-critical care syndrome and others. Clinical evaluation should focus on identifying the pathophysiology, followed by appropriate remedial measures. In people with symptoms suggestive of long COVID but without known history of previous SARS-CoV-2 infection, serology may help confirm the diagnosis. Conclusions This review will helps the clinicians to manage various aspects of Long COVID.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects.

              In 2011 a new syndrome termed 'ASIA Autoimmune/Inflammatory Syndrome Induced by Adjuvants' was defined pointing to summarize for the first time the spectrum of immune-mediated diseases triggered by an adjuvant stimulus such as chronic exposure to silicone, tetramethylpentadecane, pristane, aluminum and other adjuvants, as well as infectious components, that also may have an adjuvant effect. All these environmental factors have been found to induce autoimmunity by themselves both in animal models and in humans: for instance, silicone was associated with siliconosis, aluminum hydroxide with post-vaccination phenomena and macrophagic myofasciitis syndrome. Several mechanisms have been hypothesized to be involved in the onset of adjuvant-induced autoimmunity; a genetic favorable background plays a key role in the appearance on such vaccine-related diseases and also justifies the rarity of these phenomena. This paper will focus on protean facets which are part of ASIA, focusing on the roles and mechanisms of action of different adjuvants which lead to the autoimmune/inflammatory response. The data herein illustrate the critical role of environmental factors in the induction of autoimmunity. Indeed, it is the interplay of genetic susceptibility and environment that is the major player for the initiation of breach of tolerance. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                p_hatami2001@yahoo.com
                zeinabafshar710@gmail.com
                Journal
                Dermatol Ther
                Dermatol Ther
                10.1111/(ISSN)1529-8019
                DTH
                Dermatologic Therapy
                John Wiley & Sons, Inc. (Hoboken, USA )
                1396-0296
                1529-8019
                01 April 2022
                01 April 2022
                : e15433
                Affiliations
                [ 1 ] Autoimmune Bullous Diseases Research Center Tehran University of Medical Sciences Tehran Iran
                [ 2 ] Department of Dermatology Babol University of Medical Sciences Babol Iran
                [ 3 ] Department of Dermatology, School of Medicine Razi Hospital Tehran University of Medical Sciences Tehran Iran
                [ 4 ] Clinical Research Development Center, Imam Reza Hospital Kermanshah University of Medical Sciences Kermanshah Iran
                [ 5 ] Department of Dermatology Mayo Clinic Rochester Minnesota USA
                Author notes
                [*] [* ] Correspondence

                Zeinab Mohseni Afshar, Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.

                Email: zeinabafshar710@ 123456gmail.com

                Parvaneh Hatami, Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran.

                Email: p_hatami2001@ 123456yahoo.com

                Author information
                https://orcid.org/0000-0002-3531-2907
                Article
                DTH15433
                10.1111/dth.15433
                9111640
                35266262
                3e3d72dc-92d6-4caf-a676-a1b49ba5f222
                © 2022 Wiley Periodicals LLC.

                This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

                History
                : 21 February 2022
                : 05 March 2022
                Page count
                Figures: 0, Tables: 0, Pages: 5, Words: 4096
                Categories
                Review Article
                Review Articles
                Custom metadata
                2.0
                corrected-proof
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.6 mode:remove_FC converted:17.05.2022

                alopecia areata,anagen effluvium,covid vaccine,covid‐19,friction alopecia,telogen effluvium

                Comments

                Comment on this article