6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of loop-mediated isothermal amplification combined with lateral flow assay visualization of Plasmodium falciparum kelch 13 C580Y mutation for artemisinin resistance detection in clinical samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • PfC580Y LAMP-SNP-LFA method was developed to detect Pfkelch13 mutations.

          • This rapid and accurate tool effectively detects  Pfkelch13 mutations in clinical samples.

          • It reduces dye-induced non-specific binding and amplification inhibition in the LAMP assay.

          • It can aid in monitoring the spread of drug-resistant infections.

          Abstract

          Resistance to the antimalarial drug artemisinin (ART) has emerged in Greater Mekong Subregion. The molecular marker predominantly used to identify ART resistance is the C580Y mutation in Pfkelch13 of Plasmodium falciparum. Rapid and accurate detection of ART resistance in the field is necessary to guide malaria containment and elimination interventions. Our study evaluates the PfC580Y by using the loop-mediated isothermal amplification and single nucleotide polymorphism analysis visualization using a lateral flow assay (LAMP-SNP-LFA) method for detecting ART resistance in clinical samples collected from Thailand between 2014 and 2019. The optimized incubation condition for the reaction was determined as 45 min at 56 °C, followed by visual detection of positive amplicons using LFA. The assay demonstrated high analytical sensitivity and specificity, with a limit of detection of 16.8 copies of C580Y plasmid/µL of and 100% accuracy for C580Y mutation detection. The PfC580Y LAMP-SNP-LFA method is faster and simpler than conventional polymerase chain reaction/DNA sequencing and has the potential to support antimalarial management policies, malaria control, and global elimination efforts.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          A molecular marker of artemisinin-resistant Plasmodium falciparum malaria.

          Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo. Mutant K13-propeller alleles cluster in Cambodian provinces where resistance is prevalent, and the increasing frequency of a dominant mutant K13-propeller allele correlates with the recent spread of resistance in western Cambodia. Strong correlations between the presence of a mutant allele, in vitro parasite survival rates and in vivo parasite clearance rates indicate that K13-propeller mutations are important determinants of artemisinin resistance. K13-propeller polymorphism constitutes a useful molecular marker for large-scale surveillance efforts to contain artemisinin resistance in the Greater Mekong Subregion and prevent its global spread.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Artemisinin resistance in Plasmodium falciparum malaria.

            Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai-Cambodian border, historically a site of emerging antimalarial-drug resistance. In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance. We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate-mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P=0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco-endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups. P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.) 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid diagnostic tests for malaria parasites.

              Malaria presents a diagnostic challenge to laboratories in most countries. Endemic malaria, population movements, and travelers all contribute to presenting the laboratory with diagnostic problems for which it may have little expertise available. Drug resistance and genetic variation has altered many accepted morphological appearances of malaria species, and new technology has given an opportunity to review available procedures. Concurrently the World Health Organization has opened a dialogue with scientists, clinicians, and manufacturers on the realistic possibilities for developing accurate, sensitive, and cost-effective rapid diagnostic tests for malaria, capable of detecting 100 parasites/microl from all species and with a semiquantitative measurement for monitoring successful drug treatment. New technology has to be compared with an accepted "gold standard" that makes comparisons of sensitivity and specificity between different methods. The majority of malaria is found in countries where cost-effectiveness is an important factor and ease of performance and training is a major consideration. Most new technology for malaria diagnosis incorporates immunochromatographic capture procedures, with conjugated monoclonal antibodies providing the indicator of infection. Preferred targeted antigens are those which are abundant in all asexual and sexual stages of the parasite and are currently centered on detection of HRP-2 from Plasmodium falciparum and parasite-specific lactate dehydrogenase or Plasmodium aldolase from the parasite glycolytic pathway found in all species. Clinical studies allow effective comparisons between different formats, and the reality of nonmicroscopic diagnoses of malaria is considered.
                Bookmark

                Author and article information

                Contributors
                Journal
                Acta Trop
                Acta Trop
                Acta Tropica
                Elsevier
                0001-706X
                1873-6254
                1 October 2023
                October 2023
                : 246
                : 106998
                Affiliations
                [a ]Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
                [b ]Haematology Unit, Department of Medical Technology and Pathology, Suratthani Hospital, Surat Thani Province, Thailand
                [c ]Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
                [d ]Faculty of Graduate Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
                [e ]Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 10400, Thailand
                [f ]Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
                Author notes
                [* ]Corresponding author. mallika.imw@ 123456mahidol.ac.th
                Article
                S0001-706X(23)00185-7 106998
                10.1016/j.actatropica.2023.106998
                10465885
                37544396
                3d8d8029-9e8f-4706-8e51-fc957fc68c3d
                © 2023 The Authors. Published by Elsevier B.V.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 1 May 2023
                : 28 July 2023
                : 3 August 2023
                Categories
                Article

                Ecology
                plasmodium falciparum,c580y mutation,lamp-snp assay,lateral flow assay
                Ecology
                plasmodium falciparum, c580y mutation, lamp-snp assay, lateral flow assay

                Comments

                Comment on this article