21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in β-thalassemia and hereditary persistence of fetal hemoglobin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The implications of lncRNAs regarding fetal hemoglobin (HbF) induction in hemoglobin disorders remain poorly understood. In this study, microarray analysis was performed to profile lncRNAs, miRNAs and mRNAs in individuals with hereditary persistence of fetal hemoglobin (HPFH), β-thalassemia carriers with high HbF levels and healthy controls. The results show aberrant expression of 862 lncRNAs, 568 mRNAs and 63 miRNAs in the high-HbF group compared with the control group. Altered NR_001589, NR_120526, T315543, miR-486-3p, miR-19b-1-5p and miR-20a-3p expression was confirmed by quantitative reverse transcription-polymerase chain reaction, and Spearman correlation coefficients revealed significant positive correlations with HbF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses showed the hematopoietic cell lineage and apoptosis to be most significantly dysregulated in HbF induction. We analyzed coding genes near the lncRNAs and constructed a coding-noncoding co-expression network. Based on the results, lncRNAs likely contribute to increased HbF levels by activating expression of HBE1 and hematopoietic cell lineage-inducible molecules and by inhibiting that of apoptosis-inducible molecules. Finally, through construction of a competing endogenous RNA network, we found that 6 lncRNAs could bind competitively with miR-486-3p, resulting in increased HbF levels. Taken together, our findings provide new insights into the mechanisms of HbF induction and potentially provide new targets for the treatment of β-thalassemia major.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A.

          Differences in the amount of fetal hemoglobin (HbF) that persists into adulthood affect the severity of sickle cell disease and the beta-thalassemia syndromes. Genetic association studies have identified sequence variants in the gene BCL11A that influence HbF levels. Here, we examine BCL11A as a potential regulator of HbF expression. The high-HbF BCL11A genotype is associated with reduced BCL11A expression. Moreover, abundant expression of full-length forms of BCL11A is developmentally restricted to adult erythroid cells. Down-regulation of BCL11A expression in primary adult erythroid cells leads to robust HbF expression. Consistent with a direct role of BCL11A in globin gene regulation, we find that BCL11A occupies several discrete sites in the beta-globin gene cluster. BCL11A emerges as a therapeutic target for reactivation of HbF in beta-hemoglobin disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The H19 locus: role of an imprinted non-coding RNA in growth and development.

            The H19 gene produces a non-coding RNA, which is abundantly expressed during embryonic development and down-regulated after birth. Although this gene was discovered over 20 years ago, its function has remained unclear. Only recently a role was identified for the non-coding RNA and/or its microRNA partner, first as a tumour suppressor gene in mice, then as a trans-regulator of a group of co-expressed genes belonging to the imprinted gene network that is likely to control foetal and early postnatal growth in mice. The mechanisms underlying this transcriptional or post-transcriptional regulation remain to be discovered, perhaps by identifying the protein partners of the full-length H19 RNA or the targets of the microRNA. This first in vivo evidence of a functional role for the H19 locus provides new insights into how genomic imprinting helps to control embryonic growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster.

              We have identified an intergenic transcriptional activity that is located between the human HOXA1 and HOXA2 genes, shows myeloid-specific expression, and is up-regulated during granulocytic differentiation. The novel gene, termed HOTAIRM1 (HOX antisense intergenic RNA myeloid 1), is transcribed antisense to the HOXA genes and originates from the same CpG island that embeds the start site of HOXA1. The transcript appears to be a noncoding RNA containing no long open-reading frame; sucrose gradient analysis shows no association with polyribosomal fractions. HOTAIRM1 is the most prominent intergenic transcript expressed and up-regulated during induced granulocytic differentiation of NB4 promyelocytic leukemia and normal human hematopoietic cells; its expression is specific to the myeloid lineage. Its induction during retinoic acid (RA)-driven granulocytic differentiation is through RA receptor and may depend on the expression of myeloid cell development factors targeted by RA signaling. Knockdown of HOTAIRM1 quantitatively blunted RA-induced expression of HOXA1 and HOXA4 during the myeloid differentiation of NB4 cells, and selectively attenuated induction of transcripts for the myeloid differentiation genes CD11b and CD18, but did not noticeably impact the more distal HOXA genes. These findings suggest that HOTAIRM1 plays a role in the myelopoiesis through modulation of gene expression in the HOXA cluster.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                25 July 2017
                29 May 2017
                : 8
                : 30
                : 49931-49943
                Affiliations
                1 Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning 530021, China
                2 Guangxi Key Laboratory of Thalassemia Research, Guangxi Zhuang Autonomous Region, Nanning 530021, China
                Author notes
                Correspondence to: Yunyan He, yunyanhe@ 123456aliyun.com
                Article
                18263
                10.18632/oncotarget.18263
                5564818
                28624809
                3cf04c28-e1db-4f1d-b05b-5bec6dee0065
                Copyright: © 2017 Lai et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 26 January 2017
                : 5 May 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                lncrna,mirna,cerna,β-thalassemia,hereditary persistence of fetal hemoglobin

                Comments

                Comment on this article