2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Level of the SARS-CoV-2 receptor ACE2 activity is highly elevated in old-aged patients with aortic stenosis: implications for ACE2 as a biomarker for the severity of COVID-19

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus disease 2019 (COVID-19) has a high mortality in elderly patients with pre-existing cardiovascular diseases. The cellular receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the angiotensin-converting enzyme 2 (ACE2), thereby implicating a link between cardiovascular diseases and SARS-CoV-2 susceptibility. Aortic stenosis (AS) represents a chronic inflammatory state with severe cardiovascular complications in the elderly, a prime condition for COVID-19 mortality. The circulating ACE2 levels were measured in 111 patients with severe AS and compared to patients with hypertension and healthy individuals. About 4 times higher circulating ACE2 activity was found in patients with severe AS than in hypertensives or healthy individuals (88.3 ± 61.6., n = 111, 20.6 ± 13.4, n = 540, and 16.1 ± 7.4 mU/L, n = 46, respectively). Patients with severe AS were older than patients with hypertension (80 ± 6 years vs. 60 ± 15 years, P < 0.05). Serum ACE2 activity correlated negatively with the left ventricular ejection fraction, aortic root area, TAPSE, and positively with the right ventricular systolic pressure, cardiac diameters in patients with AS. In contrast, circulating ACE2 activity was independent of the blood pressure, peak flow velocity at the aortic root, kidney function (GFR), and inflammatory state (CRP). We found no effect of RAAS inhibitory drugs on the serum ACE2 activity in this group of patients. Our results illustrate circulating ACE2 as a potential interface between chronic inflammation, cardiovascular disease, and COVID-19 susceptibility. Elderly patients with AS have markedly elevated ACE2 levels together with altered left and right ventricular functions, which may pose higher risks during COVID-19. Our clinical data do not support a role for RAAS inhibitors in regulating circulating ACE2 levels.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein

            Summary The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor

              A new and highly pathogenic coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) caused an outbreak in Wuhan city, Hubei province, China, starting from December 2019 that quickly spread nationwide and to other countries around the world1-3. Here, to better understand the initial step of infection at an atomic level, we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 bound to the cell receptor ACE2. The overall ACE2-binding mode of the SARS-CoV-2 RBD is nearly identical to that of the SARS-CoV RBD, which also uses ACE2 as the cell receptor4. Structural analysis identified residues in the SARS-CoV-2 RBD that are essential for ACE2 binding, the majority of which either are highly conserved or share similar side chain properties with those in the SARS-CoV RBD. Such similarity in structure and sequence strongly indicate convergent evolution between the SARS-CoV-2 and SARS-CoV RBDs for improved binding to ACE2, although SARS-CoV-2 does not cluster within SARS and SARS-related coronaviruses1-3,5. The epitopes of two SARS-CoV antibodies that target the RBD are also analysed for binding to the SARS-CoV-2 RBD, providing insights into the future identification of cross-reactive antibodies.
                Bookmark

                Author and article information

                Contributors
                atitoth@med.unideb.hu
                Journal
                GeroScience
                Geroscience
                GeroScience
                Springer International Publishing (Cham )
                2509-2715
                2509-2723
                20 January 2021
                20 January 2021
                : 1-11
                Affiliations
                [1 ]GRID grid.7122.6, ISNI 0000 0001 1088 8582, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, , University of Debrecen, ; Debrecen, Hungary
                [2 ]GRID grid.7122.6, ISNI 0000 0001 1088 8582, Department of Cardiology, Faculty of Medicine, , University of Debrecen, ; Debrecen, Hungary
                [3 ]GRID grid.7122.6, ISNI 0000 0001 1088 8582, Doctoral School of Kálmán Laki, , University of Debrecen, ; Debrecen, Hungary
                [4 ]GRID grid.7122.6, ISNI 0000 0001 1088 8582, Doctoral School of Pharmacological Sciences, , University of Debrecen, ; Debrecen, Hungary
                [5 ]GRID grid.5018.c, ISNI 0000 0001 2149 4407, HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, , Hungarian Academy of Sciences, ; Budapest, Hungary
                Author information
                http://orcid.org/0000-0001-6503-3653
                Article
                300
                10.1007/s11357-020-00300-2
                7815502
                33469835
                3c81077c-42bc-4406-9ed8-4794fb695a53
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 May 2020
                : 16 November 2020
                Funding
                Funded by: Thematic Excellence Programme of the Ministry for Innovation and Technology in Hungary
                Award ID: ED_18-1-2019-0028
                Award Recipient :
                Funded by: European Regional Development Fund
                Award ID: GINOP-2.3.2-15-2016-00043
                Award ID: GINOP-2.3.2-15-2016-00050
                Award Recipient :
                Funded by: European Social Fund
                Award ID: EFOP-3.6.2-16-2017-00006
                Award Recipient :
                Funded by: National Research, Development and Innovation Fund of Hungary
                Award ID: FK 128809
                Award ID: K 116940
                Award ID: K 132623
                Award Recipient :
                Categories
                Original Article

                ace2 activity,coronavirus disease 2019 (covid-19),aortic stenosis,sars-cov-2,cardiovascular disease

                Comments

                Comment on this article