20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology.

      Annual review of plant physiology and plant molecular biology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitrate reductase (NR; EC 1.6.6.1-3) catalyzes NAD(P)H reduction of nitrate to nitrite. NR serves plants, algae, and fungi as a central point for integration of metabolism by governing flux of reduced nitrogen by several regulatory mechanisms. The NR monomer is composed of a ~100-kD polypeptide and one each of FAD, heme-iron, and molybdenum-molybdopterin (Mo-MPT). NR has eight sequence segments: (a) N-terminal "acidic" region; (b) Mo-MPT domain with nitrate-reducing active site; (c) interface domain; (d) Hinge 1 containing serine phosphorylated in reversible activity regulation with inhibition by 14-3-3 binding protein; (e) cytochrome b domain; (f) Hinge 2; (g) FAD domain; and (h) NAD(P)H domain. The cytochrome b reductase fragment contains the active site where NAD(P)H transfers electrons to FAD. A complete three-dimensional dimeric NR structure model was built from structures of sulfite oxidase and cytochrome b reductase. Key active site residues have been investigated. NR structure, function, and regulation are now becoming understood.

          Related collections

          Author and article information

          Journal
          15012211
          10.1146/annurev.arplant.50.1.277

          Comments

          Comment on this article