9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biobanking—Budgets and the Role of Pathology Biobanks in Precision Medicine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biobanks have become an important component of the routine practice of pathology. At the 2016 meeting of the Association of Pathology Chairs, a series of presentations covered several important aspects of biobanking. An often overlooked aspect of biobanking is the fiscal considerations. A biobank budget must address the costs of consenting, procuring, processing, and preserving high-quality biospecimens. Multiple revenue streams will frequently be necessary to create a sustainable biobank; partnering with other key stakeholders has been shown to be successful at academic institutions which may serve as a model. Biobanking needs to be a deeply science-driven and innovating process so that specimens help transform patient-centered clinical and basic research (ie, fulfill the promise of precision medicine). Pathology’s role must be at the center of the biobanking process. This ensures that optimal research samples are collected while guaranteeing that clinical diagnostics are never impaired. Biobanks will continue to grow as important components in the mission of pathology, especially in the era of precision medicine.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Biobankonomics: developing a sustainable business model approach for the formation of a human tissue biobank.

          The preservation of high-quality biospecimens and associated data for research purposes is being performed in variety of academic, government, and industrial settings. Often these are multimillion dollar operations, yet despite these sizable investments, the economics of biobanking initiatives is not well understood. Fundamental business principles must be applied to the development and operation of such resources to ensure their long-term sustainability and maximize their impact. The true costs of developing and maintaining operations, which may have a variety of funding sources, must be better understood. Among the issues that must be considered when building a biobank economic model are: understanding the market need for the particular type of biobank under consideration and understanding and efficiently managing the biobank's "value chain," which includes costs for case collection, tissue processing, storage management, sample distribution, and infrastructure and administration. By using these value chain factors, a Total Life Cycle Cost of Ownership (TLCO) model may be developed to estimate all costs arising from owning, operating, and maintaining a large centralized biobank. The TLCO approach allows for a better delineation of a biobank's variable and fixed costs, data that will be needed to implement any cost recovery program. This article represents an overview of the efforts made recently by the National Cancer Institute's Office of Biorepositories and Biospecimen Research as part of its effort to develop an appropriate cost model and cost recovery program for the cancer HUman Biobank (caHUB) initiative. All of these economic factors are discussed in terms of maximizing caHUB's potential for long-term sustainability but have broad applicability to the wide range of biobanking initiatives that currently exist.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MicroRNA Stability in FFPE Tissue Samples: Dependence on GC Content

            MicroRNAs (miRNAs) are small non-coding RNAs responsible for fine-tuning of gene expression at post-transcriptional level. The alterations in miRNA expression levels profoundly affect human health and often lead to the development of severe diseases. Currently, high throughput analyses, such as microarray and deep sequencing, are performed in order to identify miRNA biomarkers, using archival patient tissue samples. MiRNAs are more robust than longer RNAs, and resistant to extreme temperatures, pH, and formalin-fixed paraffin-embedding (FFPE) process. Here, we have compared the stability of miRNAs in FFPE cardiac tissues using next-generation sequencing. The mode read length in FFPE samples was 11 nucleotides (nt), while that in the matched frozen samples was 22 nt. Although the read counts were increased 1.7-fold in FFPE samples, compared with those in the frozen samples, the average miRNA mapping rate decreased from 32.0% to 9.4%. These results indicate that, in addition to the fragmentation of longer RNAs, miRNAs are to some extent degraded in FFPE tissues as well. The expression profiles of total miRNAs in two groups were highly correlated (0.88
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A multidisciplinary approach to honest broker services for tissue banks and clinical data: a pragmatic and practical model.

              Honest broker services are essential for tissue- and data-based research. The honest broker provides a firewall between clinical and research activities. Clinical information is stripped of Health Insurance Portability and Accountability Act-denoted personal health identifiers. Research material may have linkage codes, precluding the identification of patients to researchers. The honest broker provides data derived from clinical and research sources. These data are for research use only, and there are rules in place that prohibit reidentification. Very rarely, the institutional review board (IRB) may allow recontact and develop a recontact plan with the honest broker. Certain databases are structured to serve a clinical and research function and incorporate 'real-time' updating of information. This complex process needs resolution of a variety of issues regarding the precise role of the HB and their interaction with data. There also is an obvious need for software solutions to make the task of deidentification easier. The University of Pittsburgh has implemented a novel, IRB-approved mechanism to address honest broker functions to meet the specimen and data needs of researchers. The Tissue Bank stores biologic specimens. The Cancer Registry culls data and annotating information as part of state- and federal-mandated functions and collects data on the clinical progression, treatment, and outcomes of cancer patients. The Cancer Registry also has additional IRB approval to collect data elements only for research purposes. The Clinical Outcomes Group is involved in patient safety and health services research. Radiation Oncology and Medical Oncology provide critical treatment related information. Pathology and Oncology Informatics have designed software tools for querying availability of specimens, extracting data, and deidentifying specimens and annotating data for clinical and translational research. These entities partnered and submitted a joint IRB proposal to create an institutional honest broker facility. The employees of this conglomerate have honest broker agreements with the University of Pittsburgh and the Medical Center. This provides a large group of honest brokers, ensuring availability for projects without any conflict of interest. The honest broker system has been an IRB-approved institutional entity at the University of Pittsburgh since 2003. The honest broker system currently includes 33 certified honest brokers encompassing the multiple partners of this system. The honest broker system has handled >1600 requests over the past 4 years with a 25% increase in volume each year. The current results indicate that the collaborative honest broker model described herein is robust and provides a highly functional solution to the specimen and data needs for critical clinical and translational research activities.
                Bookmark

                Author and article information

                Journal
                Acad Pathol
                Acad Pathol
                APC
                spapc
                Academic Pathology
                SAGE Publications (Sage CA: Los Angeles, CA )
                2374-2895
                08 May 2017
                Jan-Dec 2017
                : 4
                : 2374289517702924
                Affiliations
                [1 ]Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
                [2 ]Department of Pathology, University of Virginia, Charlottesville, VA, USA
                [3 ]Department of Pathology, Duke University School of Medicine, Durham, NC, USA
                [4 ]Memorial Sloan Kettering Cancer Center, New York, NY, USA
                Author notes
                [*]Daniel Remick, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA. Email: remickd@ 123456bu.edu
                Author information
                http://orcid.org/0000-0003-3957-061X
                http://orcid.org/0000-0002-2615-3713
                Article
                10.1177_2374289517702924
                10.1177/2374289517702924
                5497908
                3b7cd95d-4931-451e-898b-1baccd7ad1d7
                © The Author(s) 2017

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 02 December 2016
                : 28 February 2017
                : 04 March 2017
                Funding
                Funded by: National Institute on Alcohol Abuse and Alcoholism, FundRef https://doi.org/10.13039/100000027;
                Award ID: AA022122
                Categories
                Regular Article
                Custom metadata
                January-December 2017

                biorepository,informed consent,precision medicine,the cancer genome atlas,the cancer human biobank

                Comments

                Comment on this article