9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this article, we report the successful assembly of nanoparticles (NPs) from a water-soluble chitosan (CS) derivative ( N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride, HTCC) and zein via a low-energy phase separation method.

          Abstract

          In this article, we report the successful assembly of nanoparticles (NPs) from a water-soluble chitosan (CS) derivative ( N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride, HTCC) and zein via a low-energy phase separation method. The fabricated NPs were investigated for the first time to encapsulate and protect curcumin (Cur). The particle size and zeta potential of the zein–HTCC NPs varied from 66 to 170 nm and +36.3 to +62.5 mV, respectively. The encapsulation efficiency (EE) was greatly improved to 94.9% after HTCC coating, compared with 85.2% that using zein as a single encapsulant. The microstructure of the NPs was revealed by transmission electron microscopy (TEM). The physicochemical and structural analysis showed that the electrostatic interactions and hydrogen bonds were the major forces responsible for the formation of NPs. The encapsulation forms were evaluated for their efficiency in overcoming Cur's heat and UV sensitivity, which improve the stability about 2.7 fold, 3.5 fold and 2.5 fold when disposed with 60 °C treatment for 30 min, 80 °C treatment for 1 min and ultraviolet radiation for 2 h, respectively at zein–HTCC 1 = 1 : 1. The results of the stability and DPPH assays indicated that the bioactivity was being protected upon encapsulation. Zein–HTCC NPs are believed to be promising delivery systems for the supplementation or treatment of hydrophobic nutrients or drugs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant and radical scavenging properties of curcumin.

          Curcumin (diferuoyl methane) is a phenolic compound and a major component of Curcuma longa L. In the present paper, we determined the antioxidant activity of curcumin by employing various in vitro antioxidant assays such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH*) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by the Fe(3+)-Fe(2+) transformation method, superoxide anion radical scavenging by the riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe(2+)) chelating activities. Curcumin inhibited 97.3% lipid peroxidation of linoleic acid emulsion at 15 microg/mL concentration (20 mM). On the other hand, butylated hydroxyanisole (BHA, 123 mM), butylated hydroxytoluene (BHT, 102 mM), alpha-tocopherol (51 mM) and trolox (90 mM) as standard antioxidants indicated inhibition of 95.4, 99.7, 84.6 and 95.6% on peroxidation of linoleic acid emulsion at 45 microg/mL concentration, respectively. In addition, curcumin had an effective DPPH* scavenging, ABTS*(+) scavenging, DMPD*(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, BHA, BHT, alpha-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. According to the present study, curcumin can be used in the pharmacological and food industry because of these properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study.

            Chitosan (CS) nanoparticles coated with zein has been newly demonstrated as a promising encapsulation and delivery system for hydrophilic nutrient with enhanced bioactivities in our previous study. In this study, a hydrophobic nutrient, α-tocopherol (TOC), was successfully encapsulated into zein/CS complex. The fabrication parameters, including zein concentration, zein/CS weight ratio, and TOC loading percentage, were systematically investigated. The physicochemical and structural analysis showed that the electrostatic interactions and hydrogen bonds were major forces responsible for complex formation. The scanning electron microscopy study revealed the spherical nature with smooth surface of complex. TOC encapsulation was also evidenced by differential scanning calorimetry. The particle size and zeta potential of the complex varied from 200 to 800 nm and +22.8 to +40.9 mV, respectively. The kinetic release profile of the TOC showed burst effect followed by slow release. Compared with zein nanoparticles, zein/CS complex provided better protection of TOC release against gastrointestinal conditions, due to CS coatings. Zein/CS complex is believed to be a promising delivery system for supplementation or treatment of hydrophobic nutrients or drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group.

              A novel fiber-reactive chitosan derivative was synthesized in two steps from a chitosan of low molecular weight and low degree of acetylation. First, a water-soluble chitosan derivative, N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride (HTCC), was prepared by introducing quaternary ammonium salt groups on the amino groups of chitosan. This derivative was further modified by introducing functional (acrylamidomethyl) groups, which can form covalent bonds with cellulose under alkaline conditions, on the primary alcohol groups (C-6) of the chitosan backbone. The fiber-reactive chitosan derivative, O-acrylamidomethyl-HTCC (NMA-HTCC), showed complete bacterial reduction within 20 min at the concentration of 10ppm, when contacted with Staphylococcus aureus and Escherichia coli (1.5-2.5 x 10(5) colony forming units per milliliter [CFU/mL]).
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2015
                2015
                : 5
                : 18
                : 13891-13900
                Affiliations
                [1 ]College of Food Science and Technology
                [2 ]Huazhong Agricultural University
                [3 ]Wuhan 430070
                [4 ]China
                [5 ]Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
                Article
                10.1039/C4RA14270E
                3b1fa33d-154c-4843-b60f-6cf5762cf203
                © 2015
                History

                Comments

                Comment on this article