8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Twenty three morphologically distinct microbial colonies were isolated from soil and sea water samples, which were collected from Jeddah region, Saudi Arabia for screening of the most potent biosurfactant strains. The isolated bacteria were selected by using different methods as drop collapse test, oil displacement test, blue agar test, blood hemolysis test, emulsification activity and surface tension. The results showed that the ability of Virgibacillus salarius to grow and reduce surface tension under a wide range of pH, salinities and temperatures gives bacteria isolate an advantage in many applications such as pharmaceutical, cosmetics, food industries and bioremediation in marine environment. The biosurfactant production by V. salarius decreased surface tension and emulsifying activity (30 mN/m and 80%, respectively). In addition to reducing the production cost of biosurfactants by tested several plant-derived oils such as jatropha oil, castor oils, jojoba oil, canola oil and cottonseed oil. In this respect the feasibility to reusing old frying oil of sunflower for production rhamnolipids and sophorolipids, their use that lead to solve many ecological and industrial problems.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Potential commercial applications of microbial surfactants.

          Surfactants are surface-active compounds capable of reducing surface and interfacial tension at the interfaces between liquids, solids and gases, thereby allowing them to mix or disperse readily as emulsions in water or other liquids. The enormous market demand for surfactants is currently met by numerous synthetic, mainly petroleum-based, chemical surfactants. These compounds are usually toxic to the environment and non-biodegradable. They may bio-accumulate and their production, processes and by-products can be environmentally hazardous. Tightening environmental regulations and increasing awareness for the need to protect the ecosystem have effectively resulted in an increasing interest in biosurfactants as possible alternatives to chemical surfactants. Biosurfactants are amphiphilic compounds of microbial origin with considerable potential in commercial applications within various industries. They have advantages over their chemical counterparts in biodegradability and effectiveness at extreme temperature or pH and in having lower toxicity. Biosurfactants are beginning to acquire a status as potential performance-effective molecules in various fields. At present biosurfactants are mainly used in studies on enhanced oil recovery and hydrocarbon bioremediation. The solubilization and emulsification of toxic chemicals by biosurfactants have also been reported. Biosurfactants also have potential applications in agriculture, cosmetics, pharmaceuticals, detergents, personal care products, food processing, textile manufacturing, laundry supplies, metal treatment and processing, pulp and paper processing and paint industries. Their uses and potential commercial applications in these fields are reviewed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glycerol: a promising and abundant carbon source for industrial microbiology.

            Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem, since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of methods to detect biosurfactant production by diverse microorganisms.

              Three methods to detect biosurfactant production, drop collapse, oil spreading, and blood agar lysis, were compared for their ease of use and reliability in relation to the ability of the cultures to reduce surface tension. The three methods were used to test for biosurfactant production in 205 environmental strains with different phylogenetic affiliations. Surface tension of select strains that gave conflicting results with the above three methods was also measured. Sixteen percent of the strains that lysed blood agar tested negative for biosurfactant production with the other two methods and had little reduction in surface tension (values above 60 mN/m). Thirty eight percent of the strains that did not lyse blood agar tested positive for biosurfactant production with the other two methods and had surface tension values as low as 35 mN/m. There was a very strong, negative, linear correlation between the diameter of clear zone obtained with the oil spreading technique and surface tension (rs = -0.959) and a weaker negative correlation between drop collapse method and surface tension (rs = -0.82), suggesting that the oil spreading technique better predicted biosurfactant production than the drop collapse method. The use of the drop collapse method as a primary method to detect biosurfactant producers, followed by the determination of the biosurfactant concentration using the oil spreading technique, constitutes a quick and easy protocol to screen and quantify biosurfactant production. The large number of false negatives and positives obtained with the blood agar lysis method and its poor correlation to surface tension (rs = -0.15) demonstrated that it is not a reliable method to detect biosurfactant production.
                Bookmark

                Author and article information

                Contributors
                Journal
                Saudi J Biol Sci
                Saudi J Biol Sci
                Saudi Journal of Biological Sciences
                Elsevier
                1319-562X
                2213-7106
                23 November 2014
                July 2015
                23 November 2014
                : 22
                : 4
                : 466-475
                Affiliations
                [a ]Biology Department, Faculty of Science, King AbdulAziz University, P.O. Box 15758, Jeddah 21454, Saudi Arabia
                [b ]Suez Canal University, Faculty of Agriculture, Department of Agricultural Botany, P.O. Box 41522, Ismailia, Egypt
                [c ]Chemistry of Natural and Microbial Products Department, Division of Pharmaceutical Industries, National Research Centre, Dokki, Giza, Egypt
                Author notes
                [* ]Corresponding author at: Biology Department, Faculty of Science, King AbdulAziz University, P.O. Box 15758, Jeddah 21454, Saudi Arabia. Mobile: +966 598689277. tmabrouk@ 123456kau.edu.sa
                Article
                S1319-562X(14)00155-7
                10.1016/j.sjbs.2014.11.018
                4486732
                26150754
                3b03dc6d-b9c5-425d-8105-f7964827bf63
                © 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 12 September 2014
                : 12 November 2014
                : 15 November 2014
                Categories
                Original Article

                emulsification activity,virgibacillus salarius,sophorolipids,rhamnolipids

                Comments

                Comment on this article